MV600J6B Electro-hydraulic Servo Drive

User Manual

Document Version: V0.1

Archive Date: 2024/08/19 BOM Code: R33011206

Shenzhen Megmeet Electrical Co., Ltd. provides professional technical support for our customers. You can contact the local branch office or customer service center, or directly contact the company headquarters.

Shenzhen Megmeet Electrical Co., Ltd.

All rights reserved. The contents in this document are subject to change without notice.

Shenzhen Megmeet Electrical Co., Ltd.

Address: 5th Floor, Block B, Unisplendor Information Harbor, Langshan Road, Nanshan

District, Shenzhen, 518057, China

Zip code: 518057

Website: https://www.megmeet.com

Tel: +86-755-86600500 Fax: +86-755-86600562

Service email: driveservice@megmeet.com

Foreword

Thank you for choosing the MV600J6B electro-hydraulic servo drive manufactured by Shenzhen Megmeet Electrical Co., Ltd.

MV600J6B series servo drive is designed for hydraulic equipment such as injection molding machines, die casting machines, and hydraulic presses. The product adopts high-performance vector control, and has the characteristics of energy saving, precision, high efficiency and durability. MV600J6B adopts high-performance vector control technology, which is optimized for the action characteristics in the hydraulic drive process, such as improving pressure response, improving holding pressure control accuracy and system stability, and expanding various process requirements. At the same time, functions such as software background monitoring, communication bus, multi-type encoder types and multi-pump combined control are integrated into it.

The relevant precautions during the installation, wiring, parameter setting, troubleshooting and daily maintenance will be detailed in this manual. To ensure the correct installation and operation of the MV600J6B servo drive as well as its high performance, please read carefully this user manual before installing the equipment. This manual shall be kept properly and delivered to the actual users of the drive.

We are engaged in the continuous improvement of drive. The relevant manuals provided by us are subject to change without prior notice. When the specifications are revised, please consult the agent or download the latest version from Megmeet's official website (https://www.megmeet.com/).

Precautions for unpacking inspection

Please check carefully when unpacking the product:

- Whether the product has the damage signs;
- Whether the rated value in the nameplate is consistent with your order requirement, the box contains the
 machine you ordered (attached with product certificate) and user operation manual (attached with product
 warranty card).

We have implemented strict inspection on the manufacturing, package and delivery of the product. If there is any error, please contact us or your distributor immediately.

Safety precautions

This product is a precision power electronic product. For the safety of operators and mechanical equipment, please be sure to entrust professional electrical engineering personnel to complete the relevant installation, commissioning and parameter adjustment.

Operation without following instructions can cause death or severe personal injury.

Operation without following instructions can cause medium or slight personal injury or damage to the product and other equipment.

- Please install the product on the incombustible materials (e.g., metal), otherwise, fire may be caused.
- Do not place any combustible material near the product, otherwise, fire may be caused.
- Do not install the product in the environment with explosive gas, otherwise, explosion may be caused.
- Only qualified personnel can wire the drive, otherwise, electric shock may be caused.
- Never wire the drive unless the input AC supply is completely disconnected, otherwise, electric shock may be caused.
- The grounding terminal of the drive must be reliably grounded, otherwise, electric shock may be caused.
- The cover must be properly closed before power-up, otherwise, electric shock and explosion may be caused
- When powering up the drive that has been stored for over 2 years, the input voltage must be gradually
 increased with the voltage regulator, otherwise, electric shock and explosion may be caused.
- Do not touch the terminals when the product is powered up, otherwise, electric shock may be caused.
- Do not operate the drive with wet hands, otherwise, electric shock may be caused.
- Maintenance operation can not be conducted until 10 minutes has passed after disconnecting the power supply. Meanwhile, be sure to confirm that the charge LED is completely off and the DC bus voltage is below 36V, otherwise, electric shock may be caused.
- Only qualified personnel can replace the components. Do not leave any wire or metal parts inside the
 drive, otherwise, fire may be caused.
- After changing the control board, the parameters must be properly set before operating the drive, otherwise, property damage may be caused.
- The bare parts of the terminal lugs in the main circuit must be wrapped with insulation tape, otherwise, electric shock may be caused.

NARNING

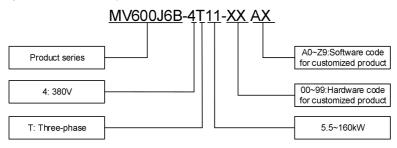
- When carrying the drive, protect the operation panel and the cover against any stress, otherwise, the drive may drop and cause human injury or property damage.
- Please install the drive on the place that can withstand the weight of the drive, otherwise, the drive may
 drop and cause human injury or property damage.
- Do not install the drive in the environment with water splash (e.g., near the water pipe), otherwise, you
 may suffer the property loss.
- Take care not to drop any foreign objects, such as the screws, gaskets and metal bars, into the drive, otherwise, fire and property damage may be caused.

- Do not install and operate the drive if it is damaged or its components are not complete, otherwise, fire and human injury may be caused.
- Do not install the product in the place exposed to direct sunlight, otherwise, property damage may be caused.
- Do not short circuit terminal P/B1 and terminal -DC, otherwise, fire and property damage may be caused
- Cable lugs must be firmly connected to the terminals of main circuit, otherwise, property damage may be caused.
- Do not connect AC 220V input to the control terminals other than terminal TA, TB, TC, BRA and BRC, otherwise, property damage may be caused.

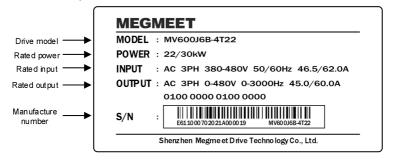
Version change

Date	Version	Change
2024-08	V0.1	The first edition

Contents


MV600J6B Electro-hydraulic Servo Drive	1
Contents	6
Chapter 1 Introduction of MV600J6B Servo Drive	8
1.1 Product model	8
1.2 Product nameplate	8
1.3 Product series	8
1.4 Technical specifications of product	9
1.5 Drive structure	11
1.6 Outline, mounting dimensions and gross weight of drive	11
1.7 Outline and mounting dimensions of operation panel	13
1.8 Outline and mounting dimensions of operation panel box	14
Chapter 2 Drive Installation	15
2.1 Installation environment	15
2.2 Mounting direction and space	15
2.3 Removal and installation of drive components	
Chapter 3 Wring of Drive	18
3.1 Wiring and configuration of main circuit terminals	18
3.2 Wiring and configuration of control circuit	21
Chapter 4 Quick Operation Guide for Drive	27
4.1 Drive operation panel	27
4.2 Function code viewing and modification method	29
4.3 Quick start	31
Chapter 5 Parameter List	32
5.1 Basic menu function code parameter table	32
5.2 Detailed description of pressure control function parameters	67
Chapter 6 Basic Steps of Pressure Control Debugging	73
6.1 Pressure debugging process	73
6.2 Selection method of main parts of hydraulic servo	73
6.3 Debugging before the system is powered on	76
6.4 Debugging after the system is powered on	77
6.5 Motor parameter tuning	78
6.6 Hydraulic servo debugging	81
Chapter 7 Parallel Control Scheme of Multiple Oil Pumps	84
7.1 Single-master multi-slave compound distribution	84
7.2 Single master multi-slave pump bypass /parallel flow	87
7.3 Multi-master multi-slave pump bypass/parallel flow	89
Chapter 8 Troubleshooting	93
8.1 Displaying exception and solutions	93

8.2 Common faults and solutions	101
8.3 Fault source analysis	104
Appendix A Optional Components	105
A.1 Peripheral components	105
A.2 AC input reactor selection	106
A.3 Braking resistor configuration	107
A.4 Servo motor selection	107
Appendix B The Use of Megdrive Studio in MV600J6B	111
B.1 Software Megdrive Studio installation and startup	111
B.2 Servo parameter setting and software interface setting	112
B.3 Function description of MV600J6B in Megdrive Studio	113
Appendix C Modbus protocol	120
C.1 Networking mode	120
C.2 Interface mode	120
C.3 Communication mode	120
C.4 Protocol format	120
C.5 Protocol function	122
C.6 Control parameter and status parameters of drive	129
C.7 Cautions	131
C.8 CRC check	132
C.9 Application example	133
C.10 Scaling of drive	135
Appendix D Warranty and Service	136


Chapter 1 Introduction of MV600J6B Servo Drive

1.1 Product model

The description of the drive model on the nameplate indicates the information of the product, such as product series, voltage class of power supply, power class, the software/hardware code of customized product, etc.

1.2 Product nameplate

1.3 Product series

Table 1-1 Name and model of drive

	Table 1-1 Name and model of drive									
Enclosure model	Product model	Rated capacity (kVA)	Rated input current (A)	Rated output current (A)	Rated output power (kW)					
	MV600J6B-4T5.5	8.5	14.5	13.0	5.5					
R3	MV600J6B-4T7.5	11.0	20.5	17.0	7.5					
R3	MV600J6B-4T11	17.0	26.0	25.0	11					
	MV600J6B-4T15	21.0	35.0	32.0	15					
	MV600J6B-4T18.5	24.0	38.5	37.0	18.5					
R4	MV600J6B-4T22	30.0	46.5	45.0	22					
	MV600J6B-4T30	40.0	62.0	60.0	30					
R5	MV600J6B-4T37	50.0	76.0	75.0	37					

Enclosure model	Product model	Rated capacity (kVA)	Rated input current (A)	Rated output current (A)	Rated output power (kW)
	MV600J6B-4T45	60.0	92.0	90.0	45
R6	MV600J6B-4T55	72.0	113.0	110.0	55
NU	MV600J6B-4T75	100.0	157.0	152.0	75
R7	MV600J6B-4T90	116.0	180.0	176.0	90
	MV600J6B-4T110	138.0	214.0	210.0	110
R7P	MV600J6B-4T132	167.0	256.0	253.0	132
	MV600J6B-4T160	200.0	307.0	304.0	160

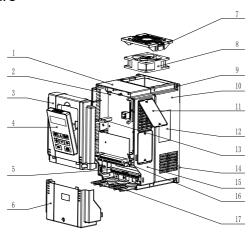

1.4 Technical specifications of product

Table 1-2 Technical specifications of drive

	Input power	Rated voltage (V)	Three-phase: 380V~480V; continuous fluctuation of voltage: ±10%, transient fluctuation of voltage: -15%~+10% (i.e. the range is 323V~528V); voltage unbalance rate: <3%, the distortion rate complies with IEC61800-2				
	wod	Rated input current (A)	Please refer to Table 1-1.				
	er	Rated frequency (Hz)	50Hz/60Hz, fluctuation range±5%				
		Standard applicative motor (kW)					
	ဝူ	Rated capacity (kVA)	Please refer to Table 1-1.				
	tput	Rated current (A)					
	Output power	Output voltage (V)	Output with three-phase under rated input conditions, 0 ~ rated input voltage, the error is less than $\pm 3\%$				
		Output frequency (Hz)	V/F: 0.00~500.00Hz (unit: 0.01Hz); vector control: 0~650Hz				
		Overload capacity	1 min for 150% rated current, 2s for 200% rated current				
Basi		Operating site	Indoor, away from direct sunlight, free from dust, corrosive gas, combustible gas, oil mist, water vapor, water dripping or salt				
Basic Specifications	Envi	Altitude	Used at the place lower than 1000m (derated at the place above 1000m, derated 1% for every increase of 100m)				
fication	Environment	Ambient temperature	-10℃~+40℃ (derated when used in the ambient temperature of 40℃~50℃)				
ons	ent	Humidity	5%~95%RH, non-condensing				
		Vibration	less than 5.9m/s²(0.6g)				
		Storage temperature	-40℃~+70℃				
		Protection degree	IP20				
		Cooling mode	Forced cooling				
	signal Digital	DI1~DI5 input	5 multi-function input terminals, please refer to 3.2.2 control board parameters and characteristics for details				
	<u>a</u> a	DO1~DO2 output	2 open-collector output terminals, please refer to 3.2.2 control board parameters and characteristics for details				
	signal Analog	Al1~Al4 input	1 analog input with 16-bit precision, 3 analog input with 12-bit precision				
	al og	AO1~AO2 output	2 multi-function analog outputs, please refer to 3.2.2 control board parameters and characteristics for details				

	output Relay	TA/TB/TC output type	1 group of normally open and normally closed contacts; the overvoltage level of the input voltage of the relay output terminal is overvoltage level II, please refer to 3.2.2 control board parameters and characteristics for details					
	supply Power	Output	Provide +13V and +24V reference power for external load, the maximum allowable output current is 10mA					
	ငင	CAN communication						
	function Communication	RS485 communication	Communicate with peripheral devices, which can realize the functions of parameter online setting, drive control, command setting, parameter uploading and downloading, etc.					
	n ation	USB communication	eic.					
	ı	ED display panel and keyboard	12 LED indicators, 5-digit LED display, 8 function keys; used for command setting, parameter display, parameter hold setting and other functions					
		Control mode	Speed control and hydraulic process control					
Contro	Pressure control input		Pressure control command input: can be set to analog input or CAN communication Speed command input: CAN communication or RS485 communication					
Control mode a	Mı	ulti-pump parallel control	Can control multiple pumps, three working modes (single-master and multi-slave compound distribution, single-master and multi-slave bypass/parallel flow, multi-master and multi-slave parallel flow)					
nd p	Pr	essure control accuracy	±1bar (screw pump)					
orod		Flow control accuracy	±0.5%FS					
and product performance	Pressure control step response ≤100ms, flow setting >70% (screw pump)							
forr	Flo	w control step response	≤50ms, feedback pressure less than 10bar					
nan	,	Speed command input	CAN or RS485 communication					
8	S	speed control accuracy	±0.5%					
		Torque response time	≤2ms					
function Protection		Hardware fault	Overcurrent, DC overvoltage, DC undervoltage, braking resistor damage, encoder damage, module overtemperature, pressure sensor fault, DEV deviation, braking overload, etc.					
on	Alarm record Can store 3 alarm records and the bus voltage, current, frequency and operation s at the latest fault time							

1.5 Drive structure

- Mid-enclosure 2. Main control board 3. Upper cover 4. Operation panel 5. Main circuit wiring terminal
 Lower cover 7. Fan guard 8. Fan 9. Mounting holes for complete unit 10. Bottom enclosure 11. Dustproof plate
 12. Nameplate 13. Connector 14. Bottom plate 15. Mid-enclosure 16. Control terminal 17. Wiring plate
 - Fig.1-1 Drive structure (taking R4 as an example)

1.6 Outline, mounting dimensions and gross weight of drive

The dimensions of the drive are shown in the figure below. Fig. 1-2 and Fig. 1-3 represent the front view, left view and top view of the enclosure appearance of different models of M600J6B, and are marked with dimensions.

1. R3~R4 is plastic enclosure (MV600J6B-4T5.5~MV600J6B-4T30)

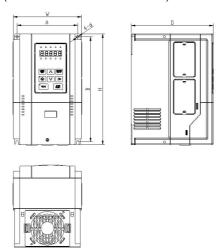


Fig.1-2 Outline, mounting dimensions for MV600J6B-4T5.5~MV600J6B-4T30

2. R5~R7P is sheet metal enclosure (panel is detachable, MV600J6B-4T30~MV600J6B-4T160)

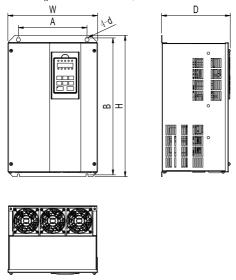


Fig.1-3 Outline, mounting dimensions for MV600J6B-4T30~MV600J6B-4T160

Note

The number and location of cooling fans vary by type of equipment:

- For R3 model, there is a cooling fan on top of the device;
- For R4 model, there are two cooling fans on the top of the device;
- For R5~R7P models, there are three cooling fans on the top of the device.

Table 1-3 Outline, mounting dimensions and gross weight

Enclosure model	Drive model	A (mm)	B (mm)	H (mm)	W (mm)	D (mm)	Diameter of mounting aperture (mm)	Gross weight (kg)
	MV600J6B-4T5.5							
R3	MV600J6B-4T7.5	137	236	249	155	198	5.5	5
KS	MV600J6B-4T11	137	230	249	155	190	5.5	5
	MV600J6B-4T15							
	MV600J6B-4T18.5							
R4	MV600J6B-4T22	186	314.5	330	209	206	6.5	7.1
K4	MV600J6B-4T30							
R5	MV600J6B-4T37	220	437.5	551.5	284.5	213	6.5	14
Ko	MV600J6B-4T45	220						14
R6	MV600J6B-4T55	070	549	570	335	262	7	30
Ro	MV600J6B-4T75	270	549	570				30
R7	MV600J6B-4T90	270	579	600	335	292	7	49
	MV600J6B-4T110							
R7P	MV600J6B-4T132	290	641	672	374	296	12	55
13/1	MV600J6B-4T160							

1.7 Outline and mounting dimensions of operation panel

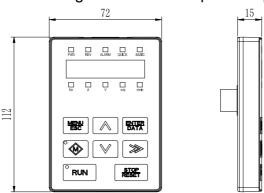


Fig.1-4 Outline and mounting dimensions of operation panel

1.8 Outline and mounting dimensions of operation panel box

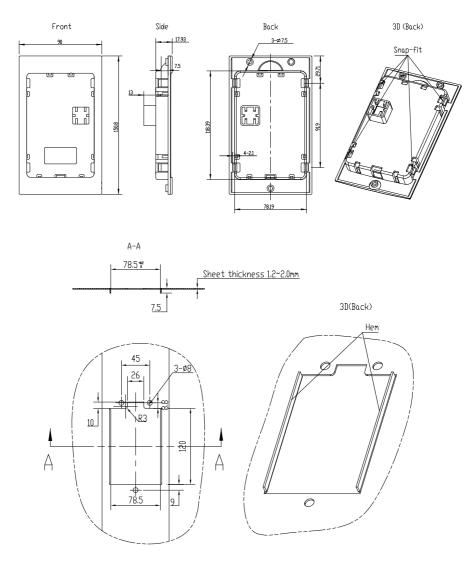


Fig.1-5 Outline and mounting dimensions of operation panel box

Chapter 2 Drive Installation

2.1 Installation environment

When selecting the installation environment, the following issues should be taken into account:

- The ambient temperature should be within -10℃~40℃. If the temperature exceeds 40℃, external
 forced cooling or derating is required.
- The humidity should be less than 95%RH, non-condensing.
- The vibration at the installation place should be less than 5.9m/s2(0.6g).
- The device should be protected from the direct sunlight.
- The device should be mounted in the location free of dust and metal powder.
- Do not install the device in the place with corrosive gas and explosive gas.

If there is any special installation requirement, please consult our company.

2.2 Mounting direction and space

The drive shall be Installed in the room, well-ventilated place. In general, the drive shall be installed vertically to avoid poor heat dissipation. For the installation spacing and distance requirement, please refer to Fig.2-1.

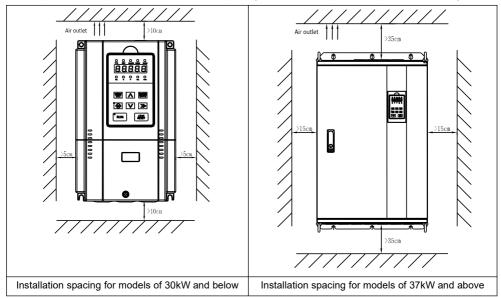


Fig.2-1 Installation spacing and distance

The heat is dissipated from the bottom to the top when the drive is dissipated, and multiple drives are usually installed side by side. When more than two drives are mounted in the up-down installation mode, the heat generated by the operation of the lower row of drives will cause the temperature of the upper row of

equipment to rise and cause faults, the partition plate should be installed between them, so as to avoid the influence of the heat dissipation from the bottom drive on the top one, as shown in Fig.2-2.

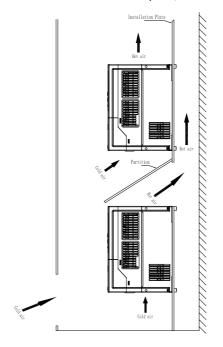


Fig.2-2 Installation of multiple drives

2.3 Removal and installation of drive components

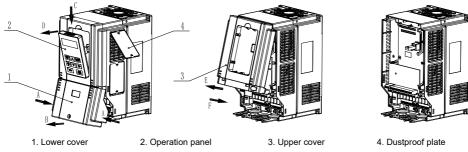


Fig.2-3 Removal and installation of drive components (taking R4 as an example)

2.3.1 Removal and installation of operation panel

Removal: Insert your finger into the square hole above the operation panel, press the clip in direction C and then separate the upper section of the operation panel with the upper cover in direction D, then separate the connector with the operation panel. Now, the operation panel is removed, as shown in Fig. 2-3.

Installation: Ensure the display of the operation panel face upwards, press the operation panel into its box while keeping them parallel. Now, the operation panel is installed, as shown in Fig. 2-3.

2.3.2 Removal and installation of cover

1. Removal and installation of lower cover

Removal: Loosen the fixing bolts of the lower cover with the screwdriver, press the snap-fits on both sides in direction A, make snap-fits off with the mid-enclosure and then lift the lower cover in direction B. Now, the lower cover is removed.

Installation: Insert the insertion piece at the top of the lower cover into the upper cover, press both sides of the lower cover with both hands in direction A so that the snap-fits can enter into the mid-enclosure, then tighten the fixing bolts of the lower cover with the screwdriver. Now, the lower cover is installed.

2. Removal and installation of upper cover

Removal: Loosen the fixing bolts of the upper cover with the screwdriver, pull in direction E to separate the upper cover from the mid-enclosure (if necessary, press the snap-fits of the upper cover from its side with the straight screwdriver). Now, the upper cover is removed.

Installation: Press the lower part of the upper cover in direction F so that its snap-fits can enter into the mid-enclosure, and then tighten the fixing bolts of the upper cover with the screwdriver. Now, the upper cover is installed.

Note

Do not directly remove the upper cover with the operation panel on it. The operation panel should be removed before removing the upper cover to avoid damages to the connecting base between the operation panel and control board, which may cause unreliable contact between the operation panel and the control board.

2.3.3 Removal and installation of dustproof plate

Removal: It is recommended to push both snap-fits of the dustproof plate from the inside of the enclosure with tools, so that the snap-fits can be separated from the mid-enclosure. Now, the dustproof plate is removed.

Installation: Place the snap-fit on one end of the dustproof plate into the mid-enclosure, move the dustproof plate to another end while pressing it till the snap-fit on another end also enters into the mid-enclosure. Now, the dustproof plate is installed.

Note

Removing the dustproof plate from the outside of the enclosure directly may damage it or the mid-enclosure. Do not press the dustproof plate forcibly if it is deformed, otherwise, it may be damaged.

Chapter 3 Wring of Drive

This chapter introduces the wiring and cable connection of drive, as well as the issues needing attention.

- Do not open the cover until the power supply of the drive is completely disconnected for at least 10 minutes.
- Make sure that the internal wiring be conducted only when the charge LED inside the drive is off and the
 voltage between the main circuit terminals +DC and -DC is below 36V.
- Only the well-trained and authorized personals are allowed to perform the internal wiring of the drive.
- Check the wiring carefully when connecting the emergency stop or safety circuit.
- Check the voltage level of the drive before power-on, otherwise, human injury and death or equipment damage may be caused.

NARNING

- Check carefully whether the rated input voltage of the drive is consistent with the AC power voltage before power-on.
- The drive has passed the dielectric strength test before delivery. Do not conduct this test again.
- When connecting the external braking resistor or braking unit, please refer to Appendix A.
- Do not connect the AC supply cables to the output terminals U, V and W.
- The diameter of copper cable used as grounding wire should be bigger than 3.5mm and the grounding resistance should be less than 10Ω.
- There is leakage current inside the drive and the value of the leakage current depends on the operating
 conditions. To ensure the safety, the drive and the motor must be grounded and a Residual
 Current Detector (i.e. RCD) is required. The type B RCD is recommended. The set value of the leakage
 current is 300mA.
- To provide the over-current protection for the input side and facilitate the power-off maintenance, the
 drive should be connected to the AC supply through a circuit breaker or a fuse.

3.1 Wiring and configuration of main circuit terminals

3.1.1 Types of main circuit input/output terminals

There are five types of main circuit terminals, due to different drive models. The detailed descriptions are as follows:

Terminal type 1

Applicable models: MV600J6B-4T5.5~MV600J6B-4T30

Terminal	Function				
R/L1, S/L2, T/L3	Three-phase AC 380V input terminals				
+DC, P/ B 1	Reserved for external DC reactor, connected with copper bus upon delivery				
P/ B1, B2	Reserved for external braking resistor				
-DC	DC negative bus output terminals				
U/T1, V/T2, W/T3	Three-phase AC output terminals				

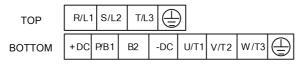
Terminal type 2

Applicable models: MV600J6B-4T37~ MV600J6B-4T45

PE	R/L1	S/L2	T/L3	+DC/B1	B2	-DC	U/T1	V/ T2	W/T3	PE
----	------	------	------	--------	----	-----	------	-------	------	----

Terminal	Function
R/L1, S/L2,T/L3	Three-phase AC 380V input terminals
+DC/B1, B2	Reserved for external braking resistor
-DC	DC negative bus output terminals
U/T1, V/T2, W/T3	Three-phase AC output terminals

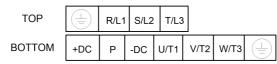
Terminal type 3


Applicable models: MV600J6B-4T55~ MV600J6B-4T75

	R/L1	S/L2	T/L3	+DC	P/B1	B2	-DC	U/T1	V/T2	W/T3	
--	------	------	------	-----	------	----	-----	------	------	------	--

Terminal	Function
R/L1, S/L2, T/L3	Three-phase AC 380V input terminals
+DC, P/ B 1	Reserved for external DC reactor, connected with copper bus upon delivery
P/ B1, B2	Reserved for external braking resistor
-DC	DC negative bus output terminals
U/T1, V/T2, W/T3	Three-phase AC output terminals

Terminal type 4


Applicable models: MV600J6B-4T90

Terminal	Function
R/L1, S/L2, T/L3	Three-phase AC 380V input terminals
+DC, P/B1	Reserved for external DC reactor, connected with copper bus upon delivery
P/ B1, B2	Reserved for external braking resistor
-DC	DC negative bus output terminals
U/T1, V/T2, W/T3	Three-phase AC output terminals

Terminal type 5

Applicable models: MV600J6B-4T110~MV600J6B-4T160

Terminal	Function
R/L1, S/L2, T/L3	Three-phase AC 380V input terminals
P, +DC	Reserved for external DC reactor, connected with copper bus upon delivery
P, -DC	Reserved for external braking unit
-DC	DC negative bus output terminals
U/T1, V/T2, W/T3	Three-phase AC output terminals

□ Note

- 1. Connect the input power cable to the drive power input terminals R/L1, S/L2, T/L3 respectively, connect the grounding conductor of the input power cable to any grounding screw (PE) of the drive, and turn the screws to proper tightness to ensure smooth connection.
- 2. Connect the W V U of the three-phase input terminals of the motor to the servo motor connection terminals W/T1, V/T2 and U/T3 of the drive respectively, and turn the screws to proper tightness to ensure smooth connection. Connect the motor grounding terminal to any grounding screw (PE) of the drive. Connect the motor temperature measuring resistance terminal to the drive terminal thermistor positive and negative, and turn the screws to proper tightness to ensure smooth connection. Connect the motor resolver connection terminal to the drive connector J7 and tighten the fixing screw.
- 3. Connect the two terminals of the braking resistor to the drive terminals P/B1 and B2, and turn the screws to proper tightness to ensure smooth connection.

3.1.2 Wiring for basic operation

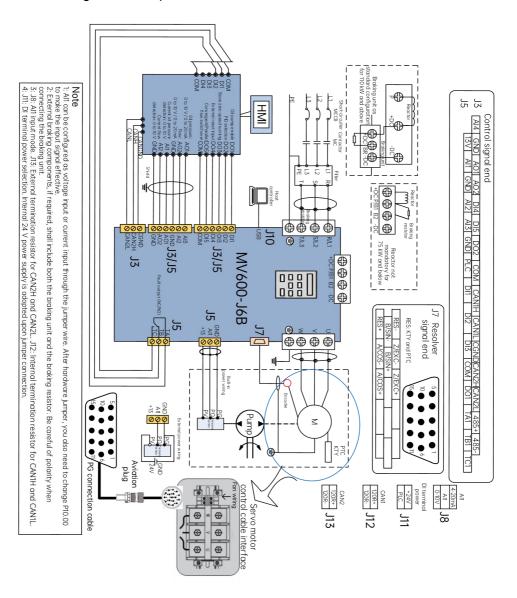


Fig.3-1 Wiring diagram for main circuit and control circuit terminals

3.2.1 Control circuit terminal distribution

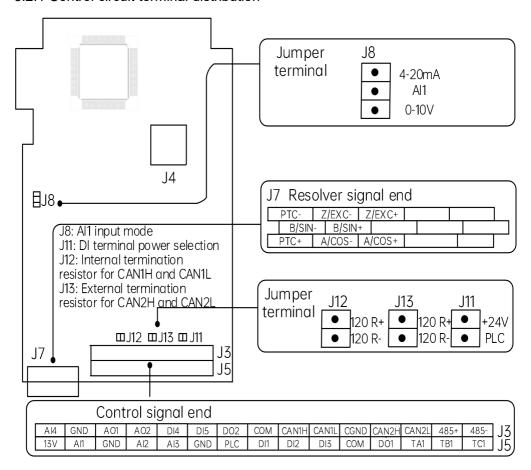


Fig.3-2 Control circuit terminal distribution

3.2.2 Control board parameters and characteristics

Al4	GND	AO1	AO2	DI4	DI5	DO2	COM	CAN1H	CANIL	CGND	CAN2H	CAN2L	485+	485-	
	13V	Al1	GND	Al2	Al3	GND	PLC	DI1	DI2	DI3	COM	D01	TA1	TB1	TC1

Fig.3-3 Control circuit terminal distribution

Table 3-1 Control circuit terminal function table

	Table 3-1 Control circuit terminal function table					
Terminal mark	Туре	Terminal	Name	Function	Specification	
J5	Power cumply	REF+13	+13V power supply	To provide +13V reference power for external load	Allowable maximum output current: 10mA	
J5	Power supply	Power supply GND		The reference ground for analog signal, +13V and +10V/-10V power	Internal isolated with COM	
J5		Al1	Analog single-end input Al1	To receive the single-end analog voltage or current input with the analog input voltage/current selected via the jumper and the corresponding input type selected by the function code P10.00 (reference grounding: GND)	Input voltage range: -10V~10V (input resistance: $20k\Omega$), resolution: 1/65536 Input current range: $0mA~20mA$ (input resistance: 246Ω), resolution: 1/65536	
		AI2	Analog single-end input Al2			
		AI3	Analog single-end input Al3	During analog voltage input, Al3 is the signal	Input voltage range: -10V~10V (input	
		Al4	Analog voltage differential input Al2+ or analog voltage single-end input	input end (reference grounding: GND).	resistance: 20kΩ), resolution: 1/4000	
J3	AO1		Analog output	Provide analog voltage output. The analog		
Analog	Analog output	AO2	Analog output 2	output range of the analog voltage is selected in the function code P10.69 and P10.72 (reference grounding: GND).	Voltage output range: 0~10V	

Terminal mark	Туре	Terminal	Name	Function	Specification	
		RS485+	RS485	Positive end of 485 differential signal (reference grounding: GND)	Standard RS485 communication interface.	
		RS485-	interface	Negative end of 485 differential signal (reference grounding: GND)	Please use twisted pair wire or shielded wire.	
	Communication	CAN1H	Internal CAN	Whether connect terminal resistor is		
		CAN1L	communication	selected by the J12	Please use twisted pair wire or shielded wire.	
		CANGND	interface	jumper on the control board		
		CAN2H	External CAN	Whether connect terminal resistor is	Please use twisted pair wire or shielded wire.	
		CAN2L	communication	selected by the J13 jumper on the control board		
		Multi-functional DI1 input terminal 1			Opto-isolated input, please refer to	
J5		DI2	Multi-functional input terminal 2	digital input terminal with multiple functions. The input terminal can	the introduction to the multifunctional input/output terminal wiring Input resistance: R=3.1kΩ; maximum	
	Multi-functional input terminal	DI3	Multi-functional input terminal 3		input resistance: R=3.1K12, maximum input frequency: 200Hz Input voltage range: 20V~30V	
13	J3 DI5	Multi-functional input terminal 4	(common terminal:	PLC + YA		
33		DI5	Multi-functional input terminal 5		фсом	
J5	Multi-functional output terminal	DO1	Open collector output terminal DO1 pulse output terminal	It can be set as the digital output terminal with multiple functions and also can be reused as DO pulse output	Opto-isolated output Maximum operating voltage: 30V Maximum output current: 50mA	

Terminal mark	Туре	Terminal	Name	Function	Specification
				terminal, which is selected by the function code P09.18. (common terminal: COM)	
J3		DO2	Open collector output terminal DO2 pulse output terminal	It can be set as the digital output terminal with multiple functions and also can be reused as DO pulse output terminal, which is selected by the function code P09.19. (common terminal: COM)	
J11	Power supply	+24	+24V power supply	To provide +24V power for external load	Maximum output current: 200mA
J5	Common terminal	PLC	Multi-functional input common terminal	Common terminal of multi-functional input terminal (Shorted with +24V upon delivery)	Common terminal of D1~D8, PLC is internally isolated with +24 V
J3/J5		СОМ	+24V power common terminal	1 common terminal, used together with other terminals	COM is internally isolated with GND
		TA			TA-TB: normally closed; TA-TC: normally open
	J5 Relay output terminal 1	ТВ		It can be set as the relay output terminal	Contact capacity: AC250V/2A (COS Φ=1)
J5		тс	Relay output	with multiple functions through P09.20 (common terminal: COM).	AC250V/1A (COS Φ =0.4) DC30V/1A The over-voltage class for the input voltage of the relay output terminal is class II.

Mote

It is suggested to use the wire with cross section area over 1mm^2 as the connecting wire of the control circuit terminals.

3.2.3 Encoder terminal

Terminal number	Туре	Pin number	Pin definition	Function	Terminal distribution
		3	Z/EXC+	Resolver excitation negative	15 13 5
		4	Z/EXC-	Resolver excitation positive	
		5	PTC-	Thermistor negative	
J7	Resolver terminal		9 B/SIN+	Resolver feedback SIN positive	
J/			terminal	10	B/SIN-
		13	A/COS+	Resolver feedback COS positive	
		14	A/COS-	Resolver feedback COS negative	_
		12	PTC+	Thermistor positive	

Chapter 4 Quick Operation Guide for Drive

4.1 Drive operation panel

4.1.1 Introduction to drive operation panel

Through the operation panel, the function code setting and modification, working status monitoring and operation control of the servo drive can be realized. The appearance of the operation panel and the names of the operation keys are shown in the following figure:

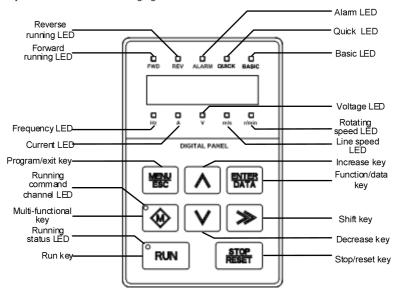


Fig. 4-1 Schematic diagram of operation panel

4.1.2 LED description

Table 4-1 LED description

LED	symbol	mbol Name Meaning		Color
Unit LED	Hz	Frequency LED	On: Current parameter displayed represents the running frequency Flash: Current parameter displayed represents the frequency set	Green
	А	Current LED	On: Current parameter displayed represents the current	Green

	V	Voltage LED	On: Current parameter displayed represents the voltage	Green
	m/s	Line speed LED	On: Current parameter displayed represents the line speed	Green
	r/min	Rotating speed LED	On: Current parameter displayed represents the rotating speed	Green
	FWD	Forward running LED	On: In the stop status, it means the drive has forward running command In the running status, it means the drive is running forward Flash: The drive is switching from FWD to REV	Green
Status LED	REV	Reverse running LED	On: In the stop status, it means the drive has reverse running command In the running status, it means the drive is running reversely Flash: The drive is switching from REV to FWD	Green
	ALARM	Alarm LED	On: The drive enters the alarm status	Red
	QUICK	Menu mode LED	QUICK LED BASIC LED Menu mode On Off Quick menu Off On Basic menu	Green
	BASIC		Off Off Verification menu	Green

The running status LED is above the RUN key and the running command channel LED is above the Multi-functional key (M key). Their indication meanings are as shown in Table 4-2.

Table 4-2 Status LED description

LED	Display status	The indicated status of the drive
Running status LED (RUN)	Off	Stop status
Running status LED (RON)	On	Running status
Dunning command shapes	On	Operation panel control status
Running command channel LED (M)	Off	Terminal control status
LED (M)	Flash	Serial port control status

4.1.3 Introduction to operation panel keys

Table 4-3 Operation panel function table

Key	Name	Function
MENU/ESC	Program/exit key	To enter or exit the programming state
ENTER/DATA	Function/data key	To enter the lower level menu or confirm data
\wedge	Increase key	To increase the data or function code

Key	Name	Function
V	Decrease key	To decrease the data or function code
>>	Shift key	To select the bit for change in the data in editing state, or switch the
		display of status parameters in other state
M	Multi-functional key	Please refer to Table 4-4 for the useage of the Multi-functional key
RUN	Run key	When pressing this key in the operation panel mode, the drive will
KUN		start to run
STOP/RESET	Stop/reset key	Stop or fault reset

4.1.4 Identification of LED display symbols

The correspondence relation between the LED display symbols and the character/figure is as shown below:

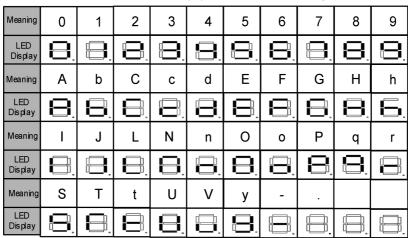


Fig. 4-2 Identification of LED display symbols

4.2 Function code viewing and modification method

4.2.1 Restore to leave-factory values

In order to prevent the deviation of servo parameters caused by human and external factors, the factory settings of the servo drive can be restored. For example, set P00.05=2, the parameters will restore to the leave-factory values. The leave-factory value setting will make the drive parameters restore to the leave-factory values.

- 1. In the stop parameter display status, press MENU/ESC key to enter the first level menu P00.00;
- 2. Press ∧ key to change P00.00 to P00.05;
- 3. Press the ENTER/DATA key to enter the second level menu;
- 4. Press the \wedge key to change 0 to 2;
- Press the ENTER/DATA key to confirm the change and return the first level menu. The change is successfully completed.

The above operation steps are shown in Fig. 4-3.

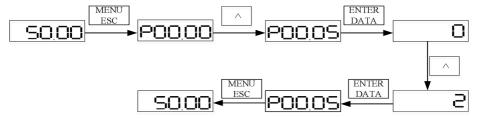


Fig. 4-3 Operation example of restoring leave-factory values

4.2.2 Setting the set frequency

For example, set P02.05=25Hz, change the setting of function code P02.05 from 50Hz to 25.00Hz.

- 1. In the stop parameter display status, press MENU/ESC key to enter the first level menu P00.00;
- 2. Press the > key to select the second highest bit;
- 3. Press \wedge key to change P00.00 to P02.00;
- 4. Press the ≫ key to select the unit place;
- 5. Press ∧ key to change P02.00 to P02.05;
- 6. Press the ENTER/DATA key to enter the second level menu;
- 7. Press the \vee key to change 50.00 to 25.00;
- 8. Press the ENTER/DATA key to confirm the change and return the first level menu. The change is successfully completed.

The above operation steps are shown in Fig. 4-4.

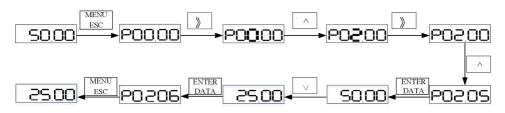


Fig. 4-4 Operation example for setting the set frequency

4.2.3 Switching status display parameters

The drive parameters displayed on the operation panel when the drive is stopped can be set through function code P16.02, such as: set frequency, bus voltage, motor speed and line speed, etc. These status parameters can be viewed by pressing the \gg key on the operation panel when they have been set. The example for the status parameter display in the drive stop status when P16.02 is FFFF is as shown in Fig.4-5.

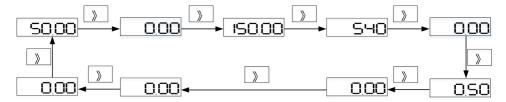


Fig. 4-5 Operation example for switching status parameter display

4.3 Quick start

4.3.1 Inspection before power-up

Conduct wiring connection according to the technical requirements specified in chapter 3 Wring of Servo Drive

4.3.2 Initial power-up operation

When the drive passes the wiring and power supply inspection, turn on the circuit breaker of the AC power supply at the drive input side to apply power to the drive. The operation panel of the drive will first display "8.8.8.8.", and then the contactor will normally engage. When the characters displayed in the digital tube change into the set frequency, it indicates that the drive initialization is finished. If the LED above the M key on the operation panel is ON, it indicates that it is in the operation panel control status.

4.3.3 No-load commissioning

- 1. Check the drive wiring, power on if correct.
- 2. Set PG closed loop vector for control mode, P02.00 = 0011.
- 3. Set PG parameters correctly, PG feedback sources P04.00, set parameters P04.00=12.
- 4. Set P03 motor parameters correctly, and do motor tuning P03.24.
- 5. When the motor tuning, motor is rotated to a certain position, and then low speed rotation, if the current is relatively small, P01.41 (resolver signal amplitude) exceeds 20000, and running smoothly, indicating that the tuning is successful. If the motor keeps running or an abnormal tuning alarm occurs, it means that the parameter settings are incorrect.
- 6. If there is a problem with the encoder, firstly make sure the number of encoder pole pairs, set the number of encoder pole pairs correctly in P04.17, ensuring the ratio of the motor poles and the number of encoder pole pairs is integer. Then check P01.41 (resolver signal amplitude), if the amplitude is lower than 7000, check the encoder wiring or encoder fault.
- 7. Set the frequency range from 0 to the rated frequency, observe whether the motor is running smoothly, whether there is vibration, especially in the vicinity of zero frequency. If there are vibration close to zero frequency, set the encoder low speed filter coefficient P04.10 and the rigid level P26.06.

□ Note

For details on parameter tuning, please go to Section 6.5.

Parameter tuning can also be called parameter self-learning or parameter self-tuning.

Chapter 5 Parameter List

Explanation to the terms in the function code parameter table

Table field	Explanation
Function code number	Representing the number of the function code, for example, P00.00
Function code name	LED function code name
LCD function code name	LCD function code name
Set range	The minimum and maximum values of the function code allowed to set
Minimum unit	The minimum unit range allowed by the function code
Leave-factory value	The value of the function code after restoring the leave-factory settings
Menu mode	"Q": Indicates simple function code mode; "B": Indicates complete function code mode.
Property	o: Means the function code can be changed during running; x: Means the function code can be changed in the stop state; *: Means the function code can be read only, can not be changed
Unit	V: Voltage; A: Current; °C: temperature; Ω: resistance; mH: inductance; rpm: rotate speed; %: percentage; bps: baud rate; Hz, kHz: frequency; ms. s, min, h. kh: time; kW: power; CC: flow; bar: pressure; /: No unit

5.1 Basic menu function code parameter table

Function code	Name	LCD display	Setting range	Min. unit	Default value	Me nu mo de	CI no	
		Gro	up P00: System management					
P00.00	Menu mode selection	Menu mode selection	O: Quick menu mode. Only the parameters related to the quick running of the drive will be displayed 1: Full menu mode All the function parameters are displayed 2: Changing the memory menu mode Only the parameters that are different from the leave-factory values are displayed	1	1	٧	7	0
P00.01	User password	User password	0: No password	1	0	×	V	0

			Other: Password protection					
P00.02	Reserved	Reserved						
P00.03	Parameter protection setting	Parameter protection setting	O: All the data can be changed; 1: Only the main set frequency (digital setting P02.05) and this function code can be changed 2: Only this function code can be changed	1	0	V	1	0
P00.04	Selection of key functions	Selection of key functions	Unit place: Pressure expert mode 0: P25.08~P25.18 function codes are not displayed 1: The above parameters are displayed Tens place: Function selection of the STOP/RESET key 0: The STOP key is valid only in the panel control mode 1: The STOP key is valid in all control modes Note: The RESET key is valid in any control mode Hundreds place: Function selection of M key Thousands place: Panel locking function 0: Lock all the keys 1: Lock all the keys except the STOP key 2: Lock all the keys except the >> key 3: Lock all the keys except the RUN & STOP key	1	0100Н	×	1	×
P00.05	Parameter initialization	Parameter initialization	Parameter changing status Clear fault memory information Restore to leave-factory value Restore the quick start function group only	1	0	×	1	×
P00.06	Parameter copy	Parameter copy	0: Disabled 1: Uploading parameter 2: Downloading parameters 3: Downloading parameters (except the motor parameters) Note: The drive parameters will not be uploaded/downloaded	1	0	×	V	×
		Group	P01: Status display parameters					
P01.00	Main reference frequency channel	Main reference frequency	Disabled Digital reference 1: Keyboard	1	1	×	√	*

		channel	2: Reserved					
		CHAIHE	3: Serial port communication reference					
			4: Al analog reference					
			5~6: Reserved					
			7: Process closed loop PID					
			8: Multi-speed					
			9: Bus reference					
P01.01	Main reference set frequency	Main reference set frequency	-3000.00~3000.00Hz	0.01Hz	0.00	×	1	*
P01.02	Auxiliary reference set frequency	Auxiliary reference set frequency	-3000.00~3000.00Hz	0.01Hz	0.00	×	√	*
P01.03	Set frequency	Set frequency	-3000.00~3000.00Hz	0.01Hz	0.00	×	√	*
P01.04	Frequency command (after acceleration/ deceleration)	Frequency command	-3000.00~3000.00Hz	0.01Hz	0.00	×	1	*
P01.05	Output frequency	Output frequency	-3000.00~3000.00Hz	0.01Hz	0.00	×	1	*
P01.06	Output voltage	Output voltage	0~480V	1V	0	×	1	*
P01.07	Output current	Output current	0.0~3le	0.1A	0.0	×	V	*
P01.08	Torque current	Torque current	-300.0~+300.0%	0.1%	0.0%	×	V	*
P01.09	Flux current	Flux current	0~+100.0%	0.1%	0.0%	×	1	*
P01.10	Output torque	Output torque	-300.0~+300.0%	0.1%	0.0%	×	1	*
P01.11	Motor power	Motor power	0.0~6500.0kW	0.1	0.0	×	1	*
P01.12	Feedback speed of motor	Feedback speed of motor	-3000.0~3000.0RPM	0.1	0.0	×	×	*
P01.13	Feedback frequency of motor	Feedback frequency of motor	-3000.0~3000.0Hz	0.1	0.0	×	×	*
P01.14 to P01.15	Reserved	Reserved	-	-	-	-	-	-
P01.16	Bus voltage	Bus voltage	0~800V	1V	0	×	1	*
P01.17	Operation state of the drive	Operation state of the drive	0~FFFFH Bit0: RUN/STOP Bit1: REV/FWD Bit2: Running at zero speed	1	0	×	√	*
		unve	Bit3: Accelerating Bit4: Decelerating					

			Bit5: Running at constant speed					
			Bit6: Bus undervoltage					
			Bit7: Tuning					
			Bit9: DC over-voltage limiting					
			Bit12: Drive in fault					
			Bit13: Speed control					
			Bit 13. Speed Collifor					
P01.18	State of digital input terminal	DI terminal state	0~FFH, 0: off; 1: on	1	00	×	√	*
P01.19	State of digital output terminal	DO terminal state	0~FH, 0: open; 1: close	1	4	×	√	*
P01.20	Al1 input voltage	Al1 input voltage	-10.00~10.00V	0.01V	0.00	×	V	*
P01.21	Al2 input voltage	Al2 input voltage	-10.00~10.00V	0.01V	0.00	×	V	*
P01.22	Al3 input voltage	Al3 input voltage	-10.00~10.00V	0.01V	0.00	×	V	*
P01.23	AO1 output voltage	AO1 output voltage	-10.00~10.00V	0.01V	0.00	×	√	*
P01.24	AO2 output voltage	AO2 output voltage	-10.00~10.00V	0.01V	0.00	×	V	*
P01.25								
to P01.34	Reserved	Reserved	-	-	-	-	-	-
P01.35	Al4 input voltage	Al4 input voltage	0.00~10.00V	0.01V	0.00	×	√	*
P01.36	Reserved	Reserved	-	-	-	-	-	-
P01.37	Motor angle	Motor angle	0~2048	1	0	×	√	*
P01.38	Reserved	Reserved						
P01.39	Reserved	Reserved						
P01.40	Resolver signal interference	Resolver signal interference	0~1000	1	0	×	V	*
P01.41	Resolver signal amplitude	Resolver signal amplitude	0~40000	1	0	×	V	*
P01.42	Pressure reference	Pressure reference	0.0~P25.03(The maximum system pressure)	0.1	0.0	×	×	*
P01.43	Pressure Feedback	Pressure Feedback	0.0~P25.01(Pressure sensor range)	0.1	0.0	×	×	*
P01.44	Flow reference	Flow reference	0.00~P02.15	0.01Hz	0.0	×	×	*
	ı	ıGı	roup P02: Basic parameters	1	1	I		
		<u> </u>	Unit place: Motor control mode					
			selection					
	Motor and	Motor and	0: Reserved					
P02.00	control mode	control mode	1: Vector control with PG	1	11H	√	√	×
	selection	selection	2: V/F control			'	`	
			3: IF control					
			Tens place: Motor type selection					
			. ,,			L		

			0: Reserved					
			1: Synchronous motor					
P02.01	Reserved	Reserved	-	-	-	-	-	-
P02.02	Running command channel selection	Command channel selection	O: Keyboard control 1: Terminal control 2: Communication control 3: CAN bus control	1	0	√	1	0
P02.03	Running direction setting	Running direction setting	0: Forward running; 1: Reverse running	1	0	V	1	0
P02.04	Main reference frequency source selection	Main reference source selection	0: Digital reference 1: Keyboard ∧ ∨ reference 1: Reserved 2: Serial port communication reference 3: Al analog reference 4~5: Reserved 6: Process closed loop PID 7: Multi-speed 8: Bus reference	1	0	٧	V	0
P02.05	Digital setting of main reference frequency	Main reference frequency setting	P02.17~P02.16	0.01Hz	2.00	√	V	0
P02.06~ P02.12	Reserved	Reserved	-	-	-	-	-	-
P02.13	Acceleration time	Acceleration time	0.0~3600.0	0.1	0.5	√	1	0
P02.14	Deceleration time	Deceleration time	0.0~3600.0	0.1	0.5	√	1	0
P02.15	Maximum output frequency	Maximum output frequency	MAX{50.00, upper limit frequency P02.16}~ 3000.00Hz Note: The maximum output frequency is determined by P25.05	0.01Hz	133.33	1	V	*
P02.16	Upper limit frequency	Upper limit frequency	P02.17~P02.15	0.01Hz	133.33	√	1	*
P02.17	Lower limit frequency	Lower limit frequency	0.00~P02.16	0.01Hz	0.00	V	√	0
		Gı	oup P03: Motor parameters					
P03.00	Motor rated power	Rated power	0.4~999.9kW	0.1	Dependin g on model	1	V	×
P03.01	Motor rated voltage	Rated voltage	0~rated voltage of drive (P98.04)	1	Dependin g on model	1	V	×
P03.02	Motor rated current	Rated current	0.1~999.9A	0.1A	Dependin g on model	1	V	×
P03.03	Motor rated frequency	Rated	1.00~3000.0Hz	0.01Hz	Dependin g on	√	1	×

		frequency			model			
P03.04	Motor rated rotating speed	Rated rotating speed	0~60000rpm	1rpm	Dependin g on model	V	V	×
P03.05	Motor power factor	Power factor	0.001~1.000 It shall be used when calculating the motor parameters with the nameplates	0.001	Dependin g on model	V	V	×
P03.06	Motor stator resistance	Stator resistance	0.000~65.000	0.001	Dependin g on model	V	V	×
P03.07	Motor direct axis inductance	Direct axis inductance	0.0~2000.0	0.1	Dependin g on model	V	√	×
P03.08	Motor back-EMF constant	Back-EMF constant	0.000~65.000	1	Dependin g on model	√	V	×
P03.09	Motor q-axis inductance	Q-axis inductance	0.0~20.00	0.01	Dependin g on model	V	√	×
P03.10	Motor no-load current	No-load current	0.1~999.9A	0.1A	Dependin g on model	V	√	×
P03.11	Motor rated torque	Rated torque	0.1~1000.0Nm	0.1	Dependin g on model	V	√	×
P03.12	Motor maximum torque	Maximum torque	0.1~1000.0Nm	0.1	Dependin g on model	V	√	×
P03.13	Motor maximum current	Maximum current	0.1~999.9A	0.1	Dependin g on model	V	√	×
P03.14~ P03.23	Reserved	Reserved	-	-	-	-	-	-
P03.24	Parameter tuning	Parameter tuning	0: Disabled 1: Static (motor in the static status) 2: Dynamic (motor in the rotating status) 3: All-parameter auto-tuning (motor in rotating status)	1	0	×	1	×
P03.25	Motor identification current	Motor identification current	0~30% of motor rated current	0	30	√	1	×
P03.26	Initial angle for installing encoder	Initial angle	0~360.0	0.1	0	V	1	×
P03.27	Reserved	Reserved						
P03.28	Motor type selection	Motor type selection	0: SPM 1: IPM	1	1	V	V	×
		Gro	oup P04: Encoder parameters	1	ı			
P04.00~ P04.03	Reserved	Reserved	-	-	-	-	_	_
P04.04	Encoder type	Encoder type	0: Resolver 1~3: Reserved	1	2	×	1	*

P04.05	Encoder pulses per revolution	Encoder pulses per revolution	1~10000	1	1024	×	√	0
P04.06	Encoder rotation direction	Encoder rotation direction	0: A before B 1: B before A	1	0	×	1	×
P04.07~ P04.09	Reserved	Reserved	-	-	-	-	-	-
P04.10	Encoder signal filter coefficients	Encoder signal filter coefficients	Unit place:Encoder high-speed filter: 0~9 Tens place: Encoder low-speed filter: 0~9	1	0034	×	V	0
P04.11~ P04.14	Reserved	Reserved	-	-	-	-	-	-
P04.15	Encoder wire-break detection time	Encoder wire-break detection time	0.0: Disabled 0.1~10.0s	0.1	3.0	×	1	×
P04.16	Reserved	Reserved	-	-	-	-	-	-
		Group	P05: Speed control parameters	3				
P05.00	Speed loop low-speed proportional gain	Speed loop low-speed proportional gain	0.1~200.0	0.1	12.0	1	√	0
P05.01	Speed loop low-speed integral time	Speed loop low-speed integral time	0.000~10.000S	0.001s	0.05s	√	√	0
P05.02	Speed loop low-speed output filter	ASR1 output filter	0~8 (corresponds to 0~2^8/10ms)	1	0	×	V	0
P05.03	Speed loop low-speed switching frequency	ASR switching frequency 1	0.0%~50.0%	0.1	10.0%	×	1	0
P05.04	Speed loop high-speed proportional gain	Speed loop high-speed proportional gain	0.1~200.0	0.1	10.0	1	V	0
P05.05	Speed loop high-speed integral time	Speed loop high-speed integral time	0.000~10.000S	0.001s	0.100s	V	V	0
P05.06	Speed loop high-speed output filter	ASR2 output filter	0~8 (corresponds to 0~2^8/10ms)	1	0	×	V	0
P05.07	Speed loop high-speed switching frequency	ASR switching frequency 2	0.0%~100.0%	0.1	20.0%	×	V	0
P05.08	Speed loop special speed segment proportional gain	Speed loop special speed segment proportional gain	0.1~200.0	0.1	10.0	×	1	0
P05.09	Speed loop special speed segment integral time	Speed loop special speed segment integral time	0.000~10.000s	0.001s	0.100s	×	1	0
P05.10	Speed loop special speed segment switching	ASR switching frequency 3	0.0%~100.0%	0.1	70.0%	×	1	0

	frequency							
P05.11	Differential gain enabling	Differential gain enabling	0: Disable 1: Enable	1	0	×	V	×
P05.12	Speed loop differential gain	ASR differential gain	0.00~10.00	0.01	0.00	×	√	0
P05.13 to P05.14	Reserved	Reserved	-	-	-	-	-	-
P05.15	Electric torque limit value	Torque limit value 1	0.0%~+300.0%	0.1%	170.0%	×	1	0
P05.16	Braking torque limit value	Torque limit 2	0.0%~+300.0%	0.1%	170.0%	×	1	0
P05.17 to P05.19	Reserved	Reserved	-	-	-	-	-	-
P05.20	Action selection upon detection of large speed deviation	Action selection upon detection of DEV	O: Decelerate to stop 1: Coast to stop, display Er.dEv 2: Continue to run	1	2	×	V	×
P05.21	Detection value of large speed deviation	Detection value of DEV	0%~50.0%	0.1%	16.0%	×	V	×
P05.22	Detection time of large speed deviation	DEV detection time	0.0~10.0s	0.1s	1.0	×	V	×
			Group P06: Reserved		'			
			Group P07: Reserved					
			Group P08: Reserved					
		Group P	09: Digital input/output paramete	ers				
P09.00~ P09.04	Function selection of input terminals X1~X5	X1 terminal function X2 terminal function X3 terminal function X4 terminal function X5 terminal function	0: No function 1: Drive enable (motor FWD) 2: Motor REV 3 to 5: Reserved 6: Multi-speed terminal 1 7: Multi-speed terminal 2 8: Multi-speed terminal 3 9 to 16: Reserved 17: External fault input 18 to 19: Reserved 20: The slave runs at zero speed 21: Parallel flow/bypass flow switch input 22: External reset (RESET) input 23: Coast to stop input (FRS) 24 to 36: Reserved 37: Pressure switch to speed mode 38 to 55: Reserved 56: Slave unit switchover 57: Pressure PID switch 58 to 88: Reserved 89: Multi-stage internal pressure	1	1 37 57 21 20	√	V	×

			selection 1					
			90: Multi-stage internal pressure selection 2					
			91: Multi-stage internal pressure selection 3					
			92: Multi-stage internal pressure selection 4					
P09.05 to P09.09	Reserved	Reserved	-	-	-	-	-	-
P09.10	Terminal filtering time	Terminal filtering time	0~500ms	1	10	×	V	0
P09.11~ P09.14	Reserved	Reserved	-	-	-	-	-	-
			Binary setting:					
			0: Normal logical, enabled upon connection					
	Input terminal	Input terminal	1: Inverted logical, enabled upon					
P09.15	enabled status	enabled	disconnection	1	00	×	√	0
	setting	status	Unit place of LED:					
			BIT0~BIT3: X1~X4					
			Tens place of LED: BIT0~BIT3: X5~X8					
			Binary setting: 0: Disabled					
		Virtual input	1: Enabled					
	Virtual input	Virtual input terminal	Unit place of LED:	1	00	×	 √	0
P09.16	terminal setting	setting	BIT0~BIT3: X1~X4				`	ľ
			Tens place of LED:					
			BIT0~BIT3: X5~X8					
P09.17	Reserved	Reserved	-	-	-	-	-	-
P09.18	Open collector output terminal	Y1 function	0: Drive in running state signal (RUN)	1	0	√	√	×
	Y1	selection	1 to 4: Reserved					
	Open collector	Y2 function	5: Motor overload 6: Bus voltage build-up					
P09.19	output terminal Y2	selection	7 to 9: Reserved 10: Drive running at zero-speed	1	1	√	√	×
	Relay R1		10: Drive running at zero-speed					
P09.20	output function	R1 function selection	15: Drive ready for running (RDY)	1	15	√	√	×
	selection	SCICCION	16: Drive fault					
			17: Pressure relief pump output					
P09.21	Reserved	Reserved	18: Pressure control status	_	_	_	_	_
			output 19~43: Reserved					
			Binary setting:					
	Output terminal	Output	0: Enabled upon connection					
P09.22	enabled status	terminal enabled	1: Enabled upon disconnection	1	0	×	√	0
	setting	status	Unit place of LED:					
			BIT0~BIT3: Y1,Y2,R1,R2					

P09.23	Relay R1 output delay	R1 output delay	0.1~10.0s	0.1s	0.1	×	√	0
P09.24	Frequency arrival detection width	FAR detection width	0.00~3000.00Hz	0.01Hz	2.50Hz	×	1	0
P09.25	FDT 1 level upper limit	FDT 1 level upper limit	P09.24~P02.16	0.01Hz	50.00Hz	×	V	0
P09.26	FDT 1 level lower limit	FDT 1 level lower limit	0.00~P09.23	0.01Hz	49.00Hz	×	V	0
P09.27	FDT 2 level upper limit	FDT 2 level upper limit	P09.26~P09.24	0.01Hz	25.00Hz	×	√	0
P09.28	FDT 2 level lower limit	FDT 2 level lower limit	0.00~P02.16	0.01Hz	24.00Hz	×	√	0
P09.29~ P09.33	Reserved	Reserved	-	-	-	-	-	-
P09.34	Zero-speed threshold	Zero-speed threshold	0.0%~100.0% of maximum frequency	1.0%	1.0%	×	√	0
		Group P10: A	nalog input/output terminal para	meters				
			Unit place: Al1					
P10.00	Analog input properties	Analog input properties	0: Voltage input	1	00H	×	√	×
	properties	properties	1: Current input					
			Unit place of LED: Al1 function selection					
			0: No function					
			Main reference frequency setting					
P10.01	Analog function selection	Al function selection	Tens place of LED: Al2 function selection is the same as above	1	0010H	×	√	×
			Hundreds place of LED: Al3 function selection is the same as above					
			Thousands place of LED: Al4 function selection is the same as above					
P10.02	Al1 filtering	Al1 filtering	0.000~10.000s	0.001s	0.001s	×	1	0
P10.03	Al2 filtering	Al2 filtering	0.000~10.000s	0.001s	0.001s	×	1	0
P10.04	AI3 filtering	Al3 filtering	0.000~10.000s	0.001s	0.001s	×	1	0
1 10.04			Unit place of LED: Al1 curve selection	0.0013	0.0013		•	Ü
			0: Pressure feedback curve					
			1: Flow reference curve					
			2: Pressure reference curve					
P10.05	Analog curve selection	Analog curve selection	Tens place of LED: Al2 curve selection (the same as above)	1	0210H	√	√	0
			Hundreds place of LED: Al3 curve selection (the same as above)					
			Thousands place of LED: Curve multi inflection point setting or Al4					

			curve selection (the same as above) Note: The thousands place of LED is 0, P10.12~P10.29,					
			P10.34~P10.65 function codes are not displayed; the thousands place of LED is 3, the above function codes are displayed; the thousands place of LED is 4, Al4 curve is selected					
P10.06	Maximum pressure feedback	Maximum reference 1	P10.07~100.0%	0.1%	100.0%	V	1	0
P10.07	Actual value corresponds to maximum pressure feedback	Actual value corresponds to maximum reference 1	Frequency reference: 0.0~100.0%F _{max}	0.1%	100.0%	√	1	0
P10.08	Minimum pressure feedback	Minimum reference 1	0.0%~P10.05	0.1%	0.0%	√	1	0
P10.09	Actual value corresponds to minimum pressure feedback	Actual value corresponds to minimum reference 1	The same as P10.06	0.1%	0.0%	√	1	0
P10.10	Maximum flow reference	Maximum reference 1	P10.12~100.0%	0.1%	100.0%	√	V	0
P10.11	Actual value corresponds to the maximum flow reference	Actual value corresponds to maximum reference 1	The same as P10.07	0.1%	100.0%	V	V	0
P10.12	Inflection point 9 of the flow curve reference	Inflection point 9 of the flow reference	P10.14~ P10.10	0.1%	90.0%	V	V	0
P10.13	Actual value corresponds to the inflection point 9 of the flow curve reference	Actual value of inflection point 9	The same as P10.07	0.1%	90.0%	V	1	0
P10.14	Inflection point 8 of the flow curve reference	Inflection point 8 of the flow curve reference	P10.16~P10.12	0.1%	80.0%	√	V	0
P10.15	Actual value corresponds to the inflection point 8 of the flow curve	Actual value corresponds to the inflection point 8	The same as P10.07	0.1%	80.0%	V	V	0

	reference							
P10.16	Inflection point 7 of the flow curve reference	Inflection point 7 of the flow curve reference	P10.18~ P10.14	0.1%	70.0%	V	V	0
P10.17	Actual value corresponds to the inflection point 7 of the flow curve reference	Actual value corresponds to the inflection point 7	The same as P10.07	0.1%	70.0%	V	V	0
P10.18	Inflection point 6 of the flow curve reference	Inflection point 6 of the flow curve reference	P10.20~ P10.16	0.1%	60.0%	√	V	0
P10.19	Actual value corresponds to the inflection point 6 of the flow curve reference	Actual value corresponds to the inflection point 6	The same as P10.07	0.1%	60.0%	V	V	0
P10.20	Inflection point 5 of the flow curve reference	Inflection point 5 of the flow curve reference	P10.22~ P10.18	0.1%	50.0%	√	V	0
P10.21	Actual value corresponds to the inflection point 5 of the flow curve reference	Actual value corresponds to the inflection point 5	The same as P10.07	0.1%	50.0%	1	1	0
P10.22	Inflection point 4 of the flow curve reference	Inflection point 4 of the flow curve reference	P10.24~ P10.20	0.1%	40.0%	V	V	0
P10.23	Actual value corresponds to the inflection point 4 of the flow curve reference	Actual value corresponds to the inflection point 4	The same as P10.07	0.1%	40.0%	٧	V	0
P10.24	Inflection point 3 of the flow curve reference	Inflection point 3 of the flow curve reference	P10.26~ P10.22	0.1%	30.0%	V	V	0
P10.25	Actual value corresponds to the inflection point 3 of the flow curve reference	Actual value corresponds to the inflection point 3	The same as P10.07	0.1%	30.0%	٧	V	0

P10.26	Inflection point 2 of the flow curve reference	Inflection point 2 of the flow curve reference	P10.28~ P10.24	0.1%	20.0%	V	V	0
P10.27	Actual value corresponds to the inflection point 2 of the flow curve reference	Actual value corresponds to the inflection point 2	The same as P10.07	0.1%	20.0%	V	7	0
P10.28	Inflection point 1 of the flow curve reference	Inflection point 1 of the flow curve reference	P10.30~P10.26	0.1%	10.0%	√	V	0
P10.29	Actual value corresponds to the inflection point 1 of the flow curve reference	Actual value corresponds to the inflection point 1	The same as P10.07	0.1%	10.0%	V	V	0
P10.30	Minimum reference of flow curve	Minimum reference 2	0.0%~P10.28	0.1%	0.0%	√	1	0
P10.31	Actual value corresponds to the minimum reference of flow curve	Actual value corresponds to minimum reference 2	The same as P10.07	0.1%	0.0%	V	1	0
P10.32	Maximum pressure reference	Maximum reference 1	P10.34~100.0%	0.1%	100.0%	V	1	0
P10.33	Actual value corresponds to the maximum reference of pressure	Actual value corresponds to maximum reference 1	Frequency reference: 0.0~100.0% F _{max}	0.1%	70.0%	√	V	0
P10.34	Inflection point 16 of the pressure curve reference	Inflection point 16 of the curve 1 reference	P10.36~P10.32	0.1%	91.40%	×	V	0
P10.35	Actual value corresponds to the inflection point 16 of the pressure curve reference	Actual value corresponds to the inflection point 16	The same as P10.33	0.1%	56.0%	×	V	0
P10.36	Inflection point 15 of the pressure curve reference	Inflection point 15 of the curve 1 reference	P10.38~P10.34	0.1%	85.70%	×	V	0
P10.37	Actual value	Actual value	The same as P10.33	0.1%	56.0%	×	√	0

	corresponds to the inflection point 15 of the pressure curve reference	corresponds to the inflection point 15						
P10.38	Inflection point 14 of the pressure curve reference	Inflection point 14 of the curve 1 reference	P10.40~P10.36	0.1%	80.0%	×	√	0
P10.39	Actual value corresponds to the inflection point 14 of the pressure curve reference	Actual value corresponds to the inflection point 14	The same as P10.33	0.1%	56.0%	×	V	0
P10.40	Inflection point 13 of the pressure curve reference	Inflection point 13 of the curve 1 reference	P10.42~P10.38	0.1%	74.2%	×	√	0
P10.41	Actual value corresponds to the inflection point 13 of the pressure curve reference	Actual value corresponds to the inflection point 13	The same as P10.33	0.1%	52.0%	×	√	0
P10.42	Inflection point 12 of the pressure curve reference	Inflection point 12 of the curve 1 reference	P10.44~P10.40	0.1%	68.5%	×	V	0
P10.43	Actual value corresponds to the inflection point 12 of the pressure curve reference	Actual value corresponds to the inflection point 12	The same as P10.33	0.1%	48.0%	×	√	0
P10.44	Inflection point 11 of the pressure curve reference	Inflection point 11 of the curve 1 reference	P10.46~P10.42	0.1%	62.8%	×	√	0
P10.45	Actual value corresponds to the inflection point 11 of the pressure curve reference	Actual value corresponds to the inflection point 11	The same as P10.33	0.1%	44.0%	×	√	0
P10.46	Inflection point 10 of the pressure curve reference	Inflection point 10 of the curve 1 reference	P10.48~P10.44	0.1%	57.1%	×	√	0
P10.47	Actual value corresponds to	Actual value corresponds	The same as P10.33	0.1%	40.0%	×	V	0

	the inflection point 10 of the pressure curve reference	to the inflection point 10						
P10.48	Inflection point 9 of the pressure curve reference	Inflection point 9 of the curve 1 reference	P10.50~P10.46	0.1%	51.4%	×	V	0
P10.49	Actual value corresponds to the inflection point 9 of the pressure curve reference	Actual value corresponds to the inflection point 9	The same as P10.33	0.1%	36.0%	×	1	0
P10.50	Inflection point 8 of the pressure curve reference	Inflection point 8 of the curve 1 reference	P10.52~P10.48	0.1%	45.7%	×	V	0
P10.51	Actual value corresponds to the inflection point 8 of the pressure curve reference	Actual value corresponds to the inflection point 8	The same as P10.33	0.1%	32.0%	×	1	0
P10.52	Inflection point 7 of the pressure curve reference	Inflection point 7 of the curve 1 reference	P10.54~P10.50	0.1%	40%	×	V	0
P10.53	Actual value corresponds to the inflection point 7 of the pressure curve reference	Actual value corresponds to the inflection point 7	The same as P10.33	0.1%	28.0%	×	V	0
P10.54	Inflection point 6 of the pressure curve reference	Inflection point 6 of the curve 1 reference	P10.56~P10.52	0.1%	34.3%	×	√	0
P10.55	Actual value corresponds to the inflection point 6 of the pressure curve reference	Actual value corresponds to the inflection point 6	The same as P10.33	0.1%	24.0%	×	V	0
P10.56	Inflection point 5 of the pressure curve reference	Inflection point 5 of the curve 1 reference	P10.58~P10.54	0.1%	28.5%	×	V	0
P10.57	Actual value corresponds to the inflection	Actual value corresponds to the	The same as P10.33	0.1%	20.0%	×	1	0

	point 5 of the pressure curve reference	inflection point 5						
P10.58	Inflection point 4 of the pressure curve reference	Inflection point 4 of the curve 1 reference	P10.60~P10.56	0.1%	22.8%	×	V	0
P10.59	Actual value corresponds to the inflection point 4 of the pressure curve reference	Actual value corresponds to the inflection point 4	The same as P10.33	0.1%	16.0%	×	7	0
P10.60	Inflection point 3 of the pressure curve reference	Inflection point 3 of the curve 1 reference	P10.62~P10.58	0.1%	17.1%	×	V	0
P10.61	Actual value corresponds to the inflection point 3 of the pressure curve reference	Actual value corresponds to the inflection point 3	The same as P10.33	0.1%	12.0%	×	V	0
P10.62	Inflection point 2 of the pressure curve reference	Inflection point 2 of the curve 1 reference	P10.64~P10.60	0.1%	11.4%	×	1	0
P10.63	Actual value corresponds to the inflection point 2 of the pressure curve reference	Actual value corresponds to the inflection point 2	The same as P10.33	0.1%	8.0%	×	1	0
P10.64	Inflection point 1 of the pressure curve reference	Inflection point 1 of the curve 1 reference	P10.66~P10.62	0.1%	5.7%	×	V	0
P10.65	Actual value corresponds to the inflection point 1 of the pressure curve reference	Actual value corresponds to the inflection point 1	The same as P10.33	0.1%	4.0%	×	V	0
P10.66	Minimum reference of pressure curve	Minimum reference 1	0.0%~P10.64	0.1%	0.0%	V	1	0
P10.67	Actual value corresponds to the minimum reference of pressure curve	Actual value corresponds to minimum reference 1	The same as P10.33	0.1%	0.0%	V	1	0

P10.68	Reserved	Reserved	-	-	-	-	-	-
P10.69	AO1 function	AO1 function	O: Running frequency (0 to maximum frequency) 1: Frequency reference (0 to maximum frequency) 3: Motor speed (0 to maximum speed) 4: Reserved 5: Output current (0 to 2*I _{em}) 6: Output torque (0 to 3*T _{em}) 7: Output torque current (0 to 3*T _{em}) 8: Output voltage (0 to 1.2*V _e) 9: Bus voltage (0 to 800 V) 10: Al1 after adjustment 11: Al2 after adjustment 12: Al3 after adjustment 13: Motor temperature 14: Pressure feedback 15: Speed feedback 17: Output frequency (0 to maximum frequency)	1	0	√	V	0
P10.70	AO1 gain	AO1 gain	0.0% to 200.0%	0.1%	100.0%	×	1	0
P10.71	AO1 zero offset correction	AO1 zero offset correction	-100.0% to 100.0%	0.1%	0.0%	×	1	0
P10.72	AO2 function	AO2 function	The same as P10.69	1	0	√	√	0
P10.73	AO2 gain	AO2 gain	0.0% to 200.0%	0.1%	100.0%	×	1	0
P10.74	AO2 zero offset correction	AO2 zero offset correction	-100.0% to 100.0%	0.1%	0.0%	×	V	0
P10.75	Al zero offset automatic correction	Al zero offset automatic correction	0~1	1	0	×	V	0
		1	Group P11: Reserved	•		•		
		Group P	12: Advanced function paramete	rs				
P12.00~ P12.01	Reserved	Reserved	-	-	-	-	-	-
P12.02	Carrier wave frequency	Carrier wave frequency	2~8.0kHz	0.1	8.0	√	√	0
P12.03	PWM mode optimization	PWM mode optimization	Unit place: Enable the over modulation 0: Disabled 1: Enabled Tens place: Automatic adjustment selection for carrier wave frequency 0: No automatic adjustment 1: Automatic adjustment Hundreds place: Modulation mode	1	1001H	x	√	×

			0: Two-phase/ three-phase					
			switching					
			1: Three-phase modulation					
			Thousands place: Low frequency					
			carrier limit					
			0: Disable					
			1: Enable					
P12.04	Reserved	Reserved						
P12.05	Current loop proportional gain	Current loop proportional gain	1~5000	1	600	×	1	0
P12.06	Current loop integral time	Current loop integral time	0.5~100.0ms	0.1	8.0	×	√	0
P12.07	Anti-trip function enabling	Anti-trip function enabling	0~1	1	0	×	1	×
P12.08	Frequency reduction rate upon voltage compensation	Frequency reduction rate	0.00~99.99Hz/s	0.01	10.00	×	√	0
P12.09	Pre-magnetizin g time	Pre-magnetizi ng time	0.0~10.0s	0.1	0	×	1	×
P12.10	Minimum flux reference value	Minimum flux reference value	10%~150%	1%	120%	×	1	0
P12.11	Flux-weakenin g adjustment coefficient 1	Flux-weakeni ng adjustment coefficient 1	0~10000	1	0	×	V	0
P12.12	Flux-weakenin g adjustment coefficient 2	Flux-weakeni ng adjustment coefficient 2	0~10000	1	600	×	1	0
P12.13	Flux-weakenin g control mode	Flux-weakeni ng control mode	0~1	1	1	×	1	0
			0: Operate automatically					
			1: Fan operates continually					
P12.14	Cooling fan	Fan control	during power-up	4	2	×	√	×
P12.14	control	Fair control	2: The fan runs in a running command	1	2	*	N	×
			Note: It will keep running for 3 minutes after power-off					
P12.15	Reserved	Reserved	-	-	-	-	-	-
P12.16	Base pressure and base flow enable	Base pressure and base flow enable	0: Disable 256: Enable	1	1	×	√	0
P12.17	Reserved	Reserved						

P12.18	Motor temperature detection device selection	Motor temperature detection device selection	Unit place: Temperature detection device types 0: PTC 1: KTY84 Tens place: Number of temperature detection device cores 0: Single core 1: Three core	1	10H	×	√	×
P12.19	Pressure relief difference	relief difference	0 to 65535	1	200	×	√	0
		Group I	P13: Special function parameters	s				
P13.00	Voltage utilization ratio	Voltage utilization ratio	0 to 65535	1	900	×	1	0
P13.01	Pressure difference for pressure relief valve output	Pressure difference for pressure relief valve output	0~100.0bar	1	60.0	×	1	0
P13.02	Reserved	Reserved	-	-	-	-	-	-
P13.03	Delay time for pressure flow	Delay time for pressure flow	0~1000ms	1	0	×	V	0
P13.04	Reserved	Reserved	-	-	-	-	-	-
P13.05	AO filter coefficient	AO filter coefficient	0~100	1	20	×	√	0
P13.06	Frequency feedback filter coefficient	Frequency feedback filter coefficient	0~1000	1	5	×	1	0
P13.07	Multi-reference 0	Internal pressure 1	0 to 100.0% (multi-reference 0) 0 to 175.0 (internal pressure 1)	0.1	0	×	1	0
P13.08	Multi-reference 1	Internal flow 1	0 to 100.0%	0.1	0	×	V	0
P13.09	Multi-reference 2	Internal pressure 2	0 to 100.0% (multi-reference 2) 0 to 175.0 (internal pressure 2)	0.1	0	×	√	0
P13.10	Multi-reference 3	Internal flow 2	0 to 100.0%	0.1	0	×	√	0
P13.11	Multi-reference 4	Internal pressure 3	0 to 100.0% (multi-reference 4) 0 to 175.0 (internal pressure 3)	0.1	0	×	√	0
P13.12	Multi-reference 5	Internal flow 3	0 to 100.0%	0.1	0	×	√	0
P13.13	Multi-reference 6	Internal pressure 4	0 to 100.0% (multi-reference 6) 0 to 175.0 (internal pressure 4)	0.1	0	×	√	0
P13.14	Multi-reference 7	Internal flow 4	0 to 100.0%	0.1	0	×	V	0
P13.15	Reserved	Reserved						

P13.16	Start mode of pressure compensation	Start mode of pressure compensation	0 to 2	1	0	×	1	×
P13.17	Pressure compensation mode	Pressure compensation mode	0 to 2	1	0	×	1	×
P13.18	Position range expansion	Position range expansion	0 to 1024	1	0	×	1	×
P13.19	Pressure compensation value	Pressure compensation value	0 to 30.0	0.1	0	×	1	0
P13.20	Delay time before auto-tuning start	Delay time before auto-tuning start	0.000 s to 60.000 s	0.01	0	×	V	0
P13.21 to P13.23	Reserved	Reserved	-	-	-	-	-	1
P13.24	Slave pump zero speed enable	Slave pump zero speed enable	0 to 1	1	0	×	1	0
P13.25	PDO cycle time	PDO cycle time	0 to 200	1	1	×	V	0
P13.26	Reserved	Reserved	-	-	-	-	-	-
P13.27	Delayed flow setting	Delayed flow setting	0 to 1000	1	0	×	√	0
P13.28	Delayed pressure setting	Delayed pressure setting	0 to 1000	1	0	×	V	0
P13.29	Business timing (h)	Business timing (h)	0 to 24	1	0	×	√	*
P13.30	Business timing (day)	Business timing (day)	0 to 6500	1	0	×	√	*
P13.31	Al4 filter	Al4 filter	0 to 1.000	0.001	0.001	×	√	0
P13.32	Al4 maximum setting	Al4 maximum setting	0 to 100.0	0.1	100.0	×	V	0
P13.33	Actual amount for Al4 maximum setting	Actual amount for Al4 maximum setting	0 to 100.0	0.1	100.0	×	V	0
P13.34	Al4 minimum setting	Al4 minimum setting	0 to 65535	1	0	×	V	0
P13.35	Actual amount for Al4 minimum setting	Actual amount for Al4 minimum setting	0 to 3000	1	0	×	V	0
P13.36	Al4 zero offset	Al4 zero offset	0 to 20000	1	0	×	√	0

P13.37	Al4 offset	Al4 offset	0 to 10000	1	0	×	1	0
P13.38	Al4 dead zone	Al4 dead zone	0.0 to 65500.0	1	10.0	×	√	0
P13.39 to P13.41	Reserved	Reserved	-	-	-	-	-	-
P13.42	USB monitoring cycle	USB monitoring cycle	0 to 1000	1	0	×	V	0
P13.43	USB mapping 1	USB mapping	0 to 1000	1	31	×	V	0
P13.44	USB mapping	USB mapping	0 to 1000	1	32	×	1	0
P13.45	USB mapping 3	USB mapping 3	0 to 1000	1	43	×	1	0
P13.46	USB mapping 4	USB mapping 4	0 to 1000	1	44	×	1	0
		Group P14	: Hydraulic servo control parame	eters				
P14.00	Pressure control mode	Pressure control mode	O: Non-pressure control mode 1: Internal CAN oil pressure mode (multi-pump mode) 2: Pressure control mode Al1 gives the pressure feedback reference; Al2 gives the flow reference; Al3 gives the pressure reference. 3: External CAN oil pressure mode (computer of injection molding machine) During pressure control by the servo drive, CAN gives the pressure and flow references, and Al1 gives the pressure feedback reference.	1	0	×	√	×
P14.01	Pressure command rise time	Pressure command rise time	0~6000ms	1ms	120	×	V	0
P14.02	Pressure control proportional gain Kp1	Proportional gain 1	0.000~15.000	0.001	2.1	×	V	0
P14.03	Pressure control integral gain Ki1	Integral gain 1	0.000~10.000	0.001	0.5	×	1	0
P14.04	Pressure control	Differential gain 1	0.000~10.000	0.001	0.000	×	√	0

	differential gain Kd1							
P14.05	Pressure control proportional gain Kp2	Proportional gain 2	0.000~10.000	0.001	3.5	×	1	0
P14.06	Pressure control integral gain Ki2	Integral gain 2	0.000~10.000	0.001	0.5	×	1	0
P14.07	Pressure control differential gain Kd2	Differential gain 2	0.000~10.000	0.001	0.000	×	V	0
P14.08	Flow command rise time	Flow command rise time	0.0~500.0ms	0.1	100	×	√	0
P14.09	Flow command drop time	Flow command drop time	0.0~500.0ms	0.1	100.0	×	√	0
P14.10	Reverse speed limit for pressure relief	Unloading pressure reverse speed limit	-100.0%~20.0% Note: The maximum output frequency is 100%	0.1%	-10.0%	×	V	0
P14.11	Pressure sensor fault detection selection	Pressure sensor fault detection selection	Unit place: Pressure sensor fault detection selection 0: Continue to run, no alarm 1: Continue to run and display "AL.FbL" (feedback lost) or "AL.Fbo" (feedback exceeding limit) 2: Coast to stop and display "Er.FbL" (feedback lost) or "Er.Fbo" (feedback exceeding limit) Tens place: Unloading pressure reverse speed limit fault detection selection 0: Continue to run, no alarm 1: Continue to run and display AL.PIL 2: Coast to stop and display Er.PIL Note: As long as the pressure sensor feedback fault occurs, the appropriate "feedback loss" or "feedback exceeding limit" function output terminal will have output.	1	00	×	√	×
P14.12	Pressure sensor feedback lost detection value	PID feedback lost detection value	0.0~100.0%	0.1%	3.0%	×	7	0

							_	
P14.13	Pressure sensor feedback lost detection time	PID feedback lost detection time	0.0s~25.0s	0.1s	0.2s	×	√	0
P14.14	Pressure sensor feedback exceeding limit detection level	PID feedback exceeding limit detection level	0.0~100.0%	0.1%	80.0%	×	1	0
P14.15	Pressure sensor feedback exceeding limit detection time	PID feedback exceeding limit detection time	0.0s~25.0s	0.1s	1.0s	×	V	0
P14.16	Pressure overshoot suppression function	Pressure overshoot suppression function enabled	0~3	1	2	×	1	×
P14.17	Pressure overshoot suppression detection level	Pressure overshoot suppression detection level	0.0~100.0	0.1	0.5	×	1	×
P14.18	Pressure overshoot suppression coefficient	Pressure overshoot suppression coefficient	0~100	1	80	×	√	×
P14.19	Flow control threshold	Flow control threshold	0.0 to 100.0	0.1	0.5	×	√	0
P14.20	Pressure relief delay	Pressure relief delay	1 to 9999	1.0	50	×	1	×
P14.21 to P14.24	Reserved	Reserved	-	-	-	-	-	-
P14.25	Pressure control proportional gain Kp3	Proportional gain 3	0.000~10.000	0.001	1	×	√	0
P14.26	Pressure control integral gain Ki3	Integral gain 3	0.000~10.000	0.001	0.2	×	1	0
P14.27	Pressure control differential gain Kd3	Differential gain 3	0.000~10.000	0.001	0.000	×	√	0
P14.28	Pressure command drop time	Pressure command drop time	0~6000ms	1ms	200	×	1	0
P14.29	The second	The second	0.0~500.0	0.1	35.5	×	√	0

	group of pressure overshoot suppression detection levels	group of pressure overshoot suppression detection levels						
P14.30	The second group of pressure overshoot suppression coefficients	The second group of pressure overshoot suppression coefficients	0~100	1	5	×	√	0
P14.31~ P14.33	Reserved	Reserved	-	-	-	-	-	-
P14.34	Pressure sensor fault detection current lower limit	Pressure sensor fault detection current lower limit	20.0%~300.0%	0.1%	100.0%	×	√	0
P14.35	Pressure sensor fault detection current upper limit	Pressure sensor fault detection current upper limit	20.0%~100.0%	0.1%	50.0%	×	V	0
P14.36	Pressure control state output maximum speed	Pressure control state output maximum speed	0.0%~100.0%	0.1%	20.0%	×	√	0
P14.37	Pressure control state output minimum pressure setting	Pressure control state output minimum pressure setting	0.0%~100.0%	0.1%	30.0%	×	√	0
P14.38	Pressure control state output delay time	Pressure control state output delay time	0.001~10.000s	0.001s	0.800s	×	V	0
P14.39	Pressure mode switching speed mode torque upper limit	Pressure mode switching speed mode torque upper limit	50.0~250.0%	0.1%	150%	×	√	0
			External communication param	1				
P15.00	Reserved	Reserved	- 0. 105k	-	-	-	-	-
P15.01	External CAN baud rate	External CAN baud rate	0: 125k 1: 250k 2: 500k 3: 1000k	1	1	×	V	×

P15.02	External CAN driver station number	External CAN driver station number	0 to 247	1	1	×	√	×
P15.03	External CAN disconnection detection time	External CAN disconnection detection time	0.0~1000.0s	0.1s	0s	×	1	×
P15.04	485 baud rate selection	485 baud rate selection	Unit place of LED: Baud rate selection 0: 4800 1: 9600 2: 19200 3: 38400 4: 57500 5: 115200 Tens place of LED: Data format 0: 1, 8, 2, N 1: 1, 8, 1, E 2: 1, 8, 1, O	000	001	×	1	×
P15.05	485 local address	485 local address	0~127	0	1	×	1	×
P15.06	485 local response delay	485 local response delay	0.0~1000ms	1	0ms	×	1	0
		Group P16:	Keyboard display setting param	eters				
P16.00	LED display parameter selection 1 when running	Running display 1	Binary setting: 0: No display; 1: Display Unit place of LED: BIT0: Output frequency (Hz) BIT1: Preset frequency (Hz flashing) BIT2: Output current (A) Tens place of LED: BIT0: Running rotating speed (r/min) BIT1: Preset rotating speed (r/min, flashing) BIT2: Running line speed (m/s) BIT3: Preset line speed (m/s, flashing) Hundreds place of LED: BIT0: Output power BIT1: Output toque (%) Note: The default display shall be output frequency when all the parameters are 0	1	017H	×	√	0
P16.01	LED display parameter selection 2 when running	Running display 2	Binary setting: 0: No display; 1: Display Unit place of LED:	1	00H	×	V	0

			BIT0: Output voltage (V) BIT1: Al1 (V) BIT2: Al2 (V) BIT3: Al3 (V) Tens place of LED: BIT0: Analog closed loop feedback (%) BIT1: Analog closed loop reference (%, flashing) BIT2: Terminal status (without unit) BIT3: DC bus voltage					
P16.02	LED display parameter selection when stop	Stop display	Binary setting: 0: No display; 1: Display Unit place of LED: BIT0: Preset frequency (Hz) BIT1: Running speed (r/min) BIT2: Preset speed (r/min) BIT3: DC bus voltage Tens place of LED: BIT0: Running line speed (m/s) BIT1: Preset line speed (m/s) BIT2: Analog closed loop feedback (%) BIT3: Analog closed reference (%) Hundreds place of LED: BIT0: Al1 (V) BIT1: Al2 (V) BIT1: Al3 (V) BIT3: Terminal status (without unit) Note: The default display shall be set frequency when all the parameters are 0	1	009Н	×	√	0
P16.03	Reserved	Reserved	-	-	-	-	-	-
P16.04	Rotating speed display coefficient	Rotating speed coefficient	0.1%~999.9% VF-PG: Running rotating speed = Mechanical rotating speed × P16.04 Preset rotating speed = Preset rotating speed × P16.04 VF-NPG: Running rotating speed = Running frequency × motor rated rotating speed/motor rated	0.1%	100.0%	×	√	0

			frequency × P16.04					
			Preset rotating speed = Preset frequency × motor rated rotating speed/motor rated frequency × P16.04 Non-VF: Running rotating speed = Measured/ estimated rotating speed × P16.04 Preset rotating speed = Preset frequency × motor rated rotating speed/motor rated frequency ×					
			P16.04					
P16.05	Closed loop analog display coefficient	Closed loop display coefficient	0.1%~999.9% Note: The close loop analog reference/feedback displays range is 0~9999.9	0.1%	100.0%	×	√	0
P16.06	Inverter module temperature	Inverter module temperature	-150.0℃~150.0℃	0.1℃	20.0℃	×	1	*
P16.07	Rectifier module temperature	Rectifier module temperature	-150.0℃~150.0℃	0.1℃	20.0℃	×	1	*
P16.08	Motor temperature measured	Motor temperature measured	-200.0℃~200.0℃	0.1℃	20.0℃	×	1	*
P16.09	Accumulated power-on hours	Accumulated power-on hours	0 ~ maximum 65535 hours	1hour	0	×	1	*
P16.10	Accumulated running hours	Accumulated work hours	0 ~ maximum 65535 hours	1hour	0	×	V	*
P16.11	Accumulated running hours of fan	Accumulated running hours of fan	0 ~ maximum 65535 hours	1hour	0	×	V	*
		Group P25:	Hydraulic servo selection param	eters				
P25.00	Hydraulic servo model	Hydraulic servo model	0~FFFF Jointly developed by the servo drive manufacturers and injection molding machine manufacturers, in order to set the parameters (using a parameter required for curing all the parameters set by the corresponding models). Note: When you select "0", representing that hydraulic servo model is not formulated, you need to set the parameters	1	0	×	7	0
P25.01	Pressure sensor range	Pressure sensor range	yourself. 0.0~600.0	0.1 kg/cm ²	250.0	×	√	×
P25.02	Output signal	Output signal	0:1~5V output	1 Kg/CIII-	3	×	√	×
		. •	·	l			_	

	mode of the	mode of the	1:4~20mA output (reserved)					
	pressure	pressure	2:1~10V					
	sensor	sensor	3:0~10V					
			Set according to pressure sensor specifications					
P25.03	Maximum system pressure	Maximum system pressure	0.0~255.0 The maximum pressure required by the system,when the command voltage DC10V corresponding system pressure output, corresponding to the maximum system pressure	0.1 kg/cm²	175.0	×	√	×
P25.04	Motor type	Motor type	0~65536 Jointly developed by the servo drive manufacturers and servo motor manufacturers, in order to set the parameters (using a parameter required for curing all the parameters set by P03). For specific curing parameters, see Appendix A.4. Note: When you select "0", representing that motor type is not formulated, you need to set the parameters yourself.	1	0	×	V	×
P25.05	Maximum speed	Maximum speed	0~60000rpm	1	2000	×	V	×
P25.06	Base pressure	Base pressure	Expressed by percentage of the pressure sensor range (P25.01)	0.1%	1.0%	×	1	0
P25.07	Base flow	Base flow	Expressed by percentage of the maximum speed (P25.05)	0.1%	1.0%	×	1	0
P25.08	Al1 zero offset	Al1 zero offset	-1000.0~1000.0	0.1	0.0	×	1	0
P25.09	Al1 offset	Al1 offset	-5000~5000	1	0	×	√	0
P25.10	Al2 zero offset	Al2 zero offset	-1000.0~1000.0	0.1	0.0	×	√	0
P25.11	Al2 offset	Al2 offset	-5000~5000	1	0	×	√	0
P25.12	Al3 zero offset	Al3 zero offset	-1000.0~1000.0	0.1	0.0	×	√	0
P25.13	Al3 offset	Al3 offset	-5000~5000	1	0	×	√	0
P25.14	Al1 dead zone	Al1dead zone	0.0~1000.0	0.1	10.0	×	√	0
P25.15	Al2 dead zone	Al2 dead zone	0.0~1000.0	0.1	10.0	×	√	0
P25.16	Al3 dead zone	Al3 dead zone	0.0~1000.0	0.1	10.0	×	1	0
P25.17	Overspeed fault threshold	Overspeed fault threshold	0~5000rpm	1	0	×	V	0
P25.18	Constant speed judgment threshold	Constant speed judgment threshold	0~100rpm	1	10	×	1	0
		Group P26: \	Vector control optimization paran	neters				

P26.00	Speed loop bandwidth control enable	Speed loop bandwidth control enable	0~2	1	1	×	√	×
P26.01	Expected low speed bandwidth	Expected speed bandwidth (low speed)	1.0~200.0Hz	0.1Hz	10.0Hz	×	V	×
P26.02	Expected high speed bandwidth	Expected speed bandwidth (high speed)	1.0~200.0Hz	0.1Hz	10.0Hz	×	V	×
P26.03	Speed loop rigidity class	Speed loop rigidity class	1~16	1	10	×	√	×
P26.04	System inertia	System inertia	1~100000kg.cm^2	1kg.cm ^2	1	×	1	×
P26.05	Motor stand-alone inertia	Motor stand-alone inertia	1~100000kg.cm^2	1kg.cm ^2	1	×	V	×
P26.06	Inertia identification maximum speed	Inertia identification maximum speed	20~100%	1%	80%	×	1	0
P26.07	Inertia identification enabled	Inertia identification enabled	1~100000kg.cm^2	1kg.cm ^2	0	×	V	×
P26.08	Speed filter bandwidth	Speed filter bandwidth	1~2000Hz	1Hz	500Hz	×	1	0
P26.09	Speed feedback filter bandwidth	Speed feedback filter bandwidth	100~2000Hz	1Hz	2000Hz	×	V	×
P26.10~ P26.12	Reserved	Reserved	-	-	-	-	-	-
		Group P33: I	Multi-pump parallel control parar	neters				
P33.00	Internal CAN baud rate selection	Internal CAN baud rate selection	0:125K 1:250K 2:500K 3:1M	1	3	×	1	×
P33.01	Internal CAN communication address	Internal CAN communicatio n address	1~127	1	0	×	V	×
P33.02	Internal CAN disconnection detection time	Internal CAN disconnection detection time	0.1~10.0	0.1	0.5	×	V	0
P33.03	Parallel flow type	Parallel flow type	O: Single pump 1: Single-master multi-slave composite allocation 2: Single-master and multiple-slave bypass/parallel flow 3: Multiple masters and multiple slaves parallel flow	1	0	×	V	×
P33.04	Single master selection	Single master selection	0: Invalid 1: Valid	1	0	×	√	×
P33.05	Unit number	Unit number	0~5	1	0	×	1	×
P33.06	Node master/ slave switch	Node master/ slave switch	0: Slave pump mode 1: Master pump mode	1	0	×	√	×
P33.07	Pump	Pump	0~300	1	40	×	1	×

	displacement	displacement						
P33.08	Flow cut-in threshold	Traffic cut-in threshold	0~100%	1	40%	×	√	×
P33.09	Flow cut-in hysteresis	Flow cut-in hysteresis	0~100%	0	2%	×	1	×
		Group Ps	97: Protection and fault paramete	ers				
P97.00	Fault protection and alarm property setting 1	Fault protection and alarm property setting 1	Unit place of LED: Action upon communication fault 0: Activate protection and coast to stop 1: Alarm and keep running 2: Alarm and stop in the stop mode (only in serial port control mode) 3: Alarm and stop in the stop mode (in all control modes) Tens place of LED: Action upon contactor abnormality 0: Activate protection and coast to stop 1: Alarm and keep running Hundreds place of LED: Action upon EEPROM abnormality 0: Activate protection and coast to stop 1: Alarm and keep running Thousands place of LED: Action upon 24V/±10V short circuit 0: Activate protection and coast to stop 1: Alarm and keep running	1	0000Н	×	7	×
P97.01	Fault protection and alarm property setting 2	Fault protection and alarm property setting 2	Unit place of LED: Action upon phase loss 0: Activate protection upon input and output phase loss 1: No protection upon input phase loss 2: No protection upon output phase loss 3: No protection upon input and output phase loss Tens place of LED: Master pump's action upon slave pump abnormality at the multi-pump mode 0: Activate protection and decelerate to stop 1: No action 2: Alarm and keep running Hundreds place of LED: Action	1	0000Н	×	٧	×

			upon motor overheat 0: Activate protection and decelerate to stop 1: Activate protection and coast to stop 2: Alarm and keep running Thousands place of LED: Action upon analog input (AI1, AI2, AI3) fault 0: Activate protection and decelerate to stop 1: Activate protection and coast to stop 2: Alarm and keep running					
P97.02	Fault protection and alarm property setting 3	Fault protection and alarm property setting 3	Unit place of LED: Action upon temperature sampling disconnection 0: Activate temperature protection upon inverter and rectifier module and stop in the stop mode 1: Activate temperature protection upon inverter and rectifier module and coast to stop 2: Temperature alarm upon inverter and rectifier module and keep running 3: No action to rectifier, activate temperature protection upon inverter and stop in the stop mode Tens place of LED: Action upon under-voltage fault indication 0: No action 1: Action (under-voltage is regarded as a kind of fault) Hundreds place of LED: Action upon auto-reset interval fault indication 0: No action 1: Action Thousands place of LED: Fault lockup function selection 0: Prohibited 1: Open (without fault output) 2: Open (with fault output)	1	0000Н	×	~	×
P97.03	Overload protection setting for motor	Overload protection setting	Unit place of LED: Overload compensation mode 0: No action	1	1100H	×	V	×

			1: Common motor (with low-speed compensation) 2: Variable-frequency motor (without low-speed compensation) Tens place of LED: Overload pre-alarm detection selection 0: Always detect 1: Detect only at constant speed Hundreds place of LED: Overload pre-alarm action selection 0: Alarm and keep running 1: Activate protection and coast to stop Thousands place of LED: Overload detection level selection 0: Relative to rated current of the motor (Er.oL1) 1: Relative to rated current of the drive (Er.oL2)					
P97.04	Overload pre-alarm detection level	Overload detection level	20.0%~200.0%	0.1%	180.0%	×	√	0
P97.05	Overload pre-alarm detection time	Overload detection time	0.0~60.0s	0.1s	2.0s	×	1	0
P97.06	Motor over-temperatu re protection point	Motor over-temperat ure protection point	0~200℃	1	130.0	×	1	0
P97.07	Over-voltage stall selection	Over-voltage stall selection	Disabled (when the braking resistor is installed) Enabled	1	1	×	1	×
P97.08	Over-voltage point at stall	Over-voltage point at stall	120.0%~150.0%U _{dce}	0.1%	140.0%	×	V	×
P97.09	Auto current limiting action selection	Auto current limiting action	O: Disabled at constant speed 1: Enabled at constant speed Note: Always enabled for acceleration/deceleration	1	1	×	V	×
P97.10	Auto current limiting level	Current limiting level	20.0%~200.0%le	0.1%	150.0%	×	V	×
P97.11	Frequency reduction rate upon current limiting	Frequency reduction rate	0.00~99.99Hz/s	0.01Hz/ s	10.00 Hz/s	×	V	0
P97.12	Grounding short circuit	Grounding short circuit	0: Disable 1: Enable	1	1	×	√	0

	detection upon power-up	detection upon power-up						
P97.13	Auto reset times	Auto reset times	0: No function 1~100: Auto reset times Note: Auto reset is not available for module protection, external device fault and AI over-current fault	1	0	×	V	×
P97.14	Auto reset interval	Reset interval	2.0~20.0s per time	0.1s	10.0s	×	1	×
P97.15	The first fault type	First fault	0: No abnormal record 1: Over-current during the drive acceleration (Er.oC1) 2: Over-current during the drive deceleration (Er.oC2) 3: Over-current when the drive is running with constant speed (Er.oC3) 4: Over-voltage during drive running (Er.oU1) 5 to 7: Reserved 8: Input side phase loss (Er.IrF) 9: Output side phase loss (Er.IrF) 9: Output side phase loss (Er.odF) 10: Power module protection (Er.drv) 11: Radiator 1 overheating (Er.oH1) 12: Radiator 2 overheating (Er.oH2) 13: Drive overload (Er.oL1) 14: Motor overload (Er.oL2) 15: External fault (Er.EFT) 16: EEPROM read-write error (Er.EEP) 17: Abnormal serial port communication (Er.SC1) 18: Abnormal contactor (Er.rLy1) 19: Abnormal current detection circuit (Er.CUr), Hall or amplifying circuit 20: System interference (Er.CPU) 21: PID feedback lost (Er.FbL) 22: External reference command lost (Er. EGL) 23: Keyboard parameter copy error (Er.CoP) 24: Poor tuning (Er.TUn)	1	0	×	~	*

25: Local PG fault (Er.PG1)	
26: Overspeed (Er.OVS)	
27: Reserved	
28: Parameter setting error (Er.PST)	
29: Control board 24V power short circuit (Er.24v)	
30: Dynamic auto-tuning fault (Er.r30)	
31 to 32: Reserved	
33: Grounding short circuit (Er.GdF) (reserved)	
34: Large DEV deviation fault	
(Er.dEv) 35 to 37: Reserved	
38: PID feedback exceeding limit	
(Er.Fbo)	
39: Motor over-temperature (Er.oHL)	
40: Low-frequency overload (Er.040)	
41: Abnormal AI input fault (Er.AIF abnormal analog input)	
42: Inverter module temperature sampling disconnection protection (Er.THI)	
43: Rectifier module temperature sampling disconnection protection (Er.THr)	
44: Short circuit of ±13V analog output power (Er.13v)	
45: Abnormal internal	
over-current reference (Er.rEF)	
46~47: Reserved	
48: Master CAN communication disconnected (Er.048)	
49: Slave CAN communication disconnected (Er.049)	
50. Master and slave not matched (Er.050)	
51: Braking resistor overload (Er.051)	
52: Undervoltage during main circuit running (Er.052)	
53: Business mode timing reached (Er.053)	
Note:	
Er.drv fault can not be reset until 10s later;	
· ,	

			2. For continuous over-current less than 3 times (including 3 times), it can not be reset until 6s later; if it is more than 3 times, it can not be reset until 200s later; 3. The keyboard displays AL.xxx in case of any fault (e.g. in case of the contactor fault, keyboard displays Er.xxx if there is protection action, and displays AL.xxx if continuing running with alarm)					
P97.16	The second fault type	The second fault	The same as P97.15	1	0	×	√	*
P97.17	Latest fault type	The third fault	The same as P97.15	1	0	×	1	*
P97.18	DC bus voltage at the latest fault	Fault voltage	0~999V	1V	0V	×	V	*
P97.19	Actual current at the latest fault	Fault current	0.0~999.9A	0.1A	0.0A	×	V	*
P97.20	Running frequency at the latest fault	Fault frequency	0.00Hz~3000.00Hz	0.01Hz	0.00Hz	×	V	*
P97.21	Drive running status at the latest fault	Drive status at fault	0~FFFFH	1	0000	×	V	*
	ı	G	roup P98: Drive parameters			ı		
P98.00	Serial No.	Serial No.	0~FFFF	1	607	×	√	*
P98.01	Software version No.	Software version No.	0.00~99.99	1	1.00	×	V	*
P98.02	User-customiz ed version No.	User-customi zed version No.	0~9999	1	0	×	V	*
P98.03	Rated capacity	Rated capacity	Output power (0~999.9KVA) (set by the model automatically)	0.1kVA	Manufact urer setting	×	V	*
P98.04	Rated voltage	Rated voltage	0~999V (set by the model automatically)	1V	Manufact urer setting	×	1	*
P98.05	Rated current	Rated current	0~999.9A (set by the model automatically)	0.1A	Manufact urer setting	×	V	*
P98.06	Drive series selection	Drive series selection	0: 220V 1: 380V 2: 400V 3: 415V 4: 440V 5: 460V 6: 480V	1	Manufact urer setting	×	V	*

5.2 Detailed description of pressure control function parameters

5.2.1 Hydraulic servo control parameters (Group P14)

P14.00 Pressure control mode 0~3 (0)

0: Non-pressure control mode

- 1: Internal CAN oil pressure mode (multi-pump mode)
- 2: Pressure control mode

All gives the pressure feedback reference;

Al2 gives the flow reference;

Al3 gives the pressure reference.

3: External CAN oil pressure mode

During pressure control by the servo drive, CANopen gives the pressure and flow references, and Al1 gives the pressure feedback reference.

P14.01 Pressure command rise time 0~6000ms (120)

Pressure reference command acceleration / deceleration is the soft start function to increase or decrease the target value by the set acceleration / deceleration time.

The set time refers to the required time of pressure reference from 0.0% command to 100.0% command or from 100.0% command to 0.0% command.

P14.02 Pressure control proportional gain Kp1 0.000~15.000(2.100)

The first group of PID proportional gain for pressure control. The larger Kp1 is, the quicker response becomes, but too large Kp1 may easily cause oscillation and the steady-sate error cannot be eliminated by using Kp1 control only. The smaller Kp1 is, the slower response becomes, too slow response may easily cause the lower efficiency and product instability.

P14.03 Pressure control integral gain Ki1 0.000~10.000(0.500)

The first group of PID integral gain for pressure control. The main functions of Ki1 lie in eliminating steady-state deviation and making the feedback value consistent with the target value. Too large Ki1 may easily cause overshoot and oscillation.

P14.04 Pressure control differential gain Kd1 0.000~10.000(0.000)

Kd is used for improving the response performance of the system, but too large configuration may easily cause oscillation.

 P14.05
 Pressure control proportional gain Kp2
 0.000~10.000(3.500)

 P14.06
 Pressure control integral gain Ki2
 0.000~10.000(0.500)

 P14.07
 Pressure control differential gain Kd2
 0.000~10.000(0.000)

When the terminal No.57 function (Pressure PID switching) is valid, the pressure loop PID is switched to P14.05 to P14.07.

- Note
- 1. In the hydraulic servo control, the first is to control the response of servo motor, the second is to control the response of system pressure and flow, therefore, control and adjust the servo motor response firstly and then control and adjust the system response. For servo motor control and regulation, it is mainly the speed loop and current loop parameter adjustment.
- 2. The larger percentage gain (Kp), integral gain (Ki), differential gain (Kd) are, the quicker response becomes, but too fast response easily cause that the servo motor vibrates and injection molding machine movement is unsteady; Conversely, the smaller proportional gain (Kp), integral gain (Ki), differential gain (Kd) are, the slower response becomes, and too low response easily cause the pressure control unstable and overshoot.

P14.10 Reverse speed limit for pressure relief -100.0%~20.0% (-10.0%)

The maximum reverse speed upon pressure relief, corresponding to the percentage setting of the maximum speed, is used for setting the maximum reverse speed of motor. The larger the set value is, the quicker pressure relief becomes, but too fast speed easily causes the pump reverse noise. The smaller the set value is, the slower pressure relief becomes.

P14.11 Pressure sensor fault detection selection 00~22H (00)

Unit place: Pressure sensor fault detection selection

- 0: Continue to run, no alarm
- 1: Continue to run and display "AL.FbL" (feedback lost) or "AL.Fbo" (feedback exceeding limit)
- 2: Coast to stop and display "Er.FbL" (feedback lost) or "Er.Fbo" (feedback exceeding limit)

Note: As long as the pressure sensor feedback fault occurs, the appropriate "feedback loss" or "feedback exceeding limit" multi-functional output terminal will have output.

Tens place: Unloading pressure reverse speed limit fault detection selection

- 0: Continue to run, no alarm
- 1: Continue to run and display AL.PIL
- 2: Coast to stop and display Er.PIL

P14.12	Pressure sensor feedback lost detection value	0.0~100.0(3.0%)
P14.13	Pressure sensor feedback lost detection time	0.0~25.0s (1.0s)

When the pressure sensor feedback signal is less than the detection value set by P14.12 and its time exceeds the time set by P14.13, then pressure sensor feedback is considered as "lost".

P14.14	Pressure sensor feedback exceeding limit	0.0~100.0%(100.0%)
P14.15	Pressure sensor feedback exceeding limit detection time	0.0~25.0s (1.0s)

When the pressure sensor feedback signal is greater than the detection value set by P14.14 and its time exceeds the time set by P14.15, then pressure sensor feedback is considered as "exceeding limit".

P14.28	Pressure command drop time	0~6000ms (200)

It specifies the time during which the pressure reference drops from 100% to 0%.

P14.34	Pressure sensor fault detection current lower limit	20.0%~300.0% (100.0%)
P14.35	Pressure sensor fault detection current upper limit	20.0%~100.0% (50.0%)

If no pressure sensor signal is detected and meanwhile the output current exceeds P13.34, the pressure sensor is deemed lost.

P14.36	Pressure control state output maximum speed	0.0%~100.0% (20.0%)
P14.37	Pressure control state output minimum	0.0%~100.0% (30.0%)
	pressure setting	
P14.38	Pressure control state output delay time	0.001~10.000s(0.800s)

When the difference between the feedback pressure and the reference pressure is less than the setting of P14.37, and the actual speed of the motor is lower than the setting of P14.36, after the time delay of P14.38, the holding pressure control state is output.

P14.39 Pressure mode switching speed mode torque upper limit 50.0~250.0% (150%)

When the function of terminal No. 37 (pressure switched to speed mode) is valid, the upper limit of the drive torque is determined by P14.39.

5.2.2 Hydraulic servo selection parameters (Group P25)

1	P25.00	Hydraulic servo model	0~FFFFH (0000)	

Jointly developed by the servo drive manufacturers and manufacturers of injection molding machines, in order to set the parameters (using a parameter required for curing all the parameters set by the corresponding models). When the servo pump model parameters is nonzero, the following parameters will not be changed:

P02.00	Motor and control mode selection	P03.00	Motor rated power
P03.01	Motor rated voltage	P03.02	Motor rated current
P03.03	Motor rated frequency	P03.04	Motor rated rotating speed
P03.08	Motor back-EMF constant	P05.00	Speed loop low-speed proportional gain
P05.01	Speed loop low-speed integral time	P05.04	Speed loop high-speed proportional gain
P05.05	Speed loop high-speed integral time	P05.15	Electric torque limit value
P05.16	Braking torque limit value	P14.00	Pressure control mode
P14.01	Pressure command rise time	P25.01	Pressure sensor range
P25.03	Maximum system pressure	P25.05	Maximum speed

Note: When you select "0", representing that hydraulic servo model is not formulated, you need to set the parameters yourself.

P25.01	Pressure sensor range	0.0~600.0 (250.0)

Set according to pressure sensor specifications.

P25.02 Pressure sensor output signal mode 0~3 (3)

0:1~5V output

1:4~20mA output (reserved)

2:1~10V

3:0~10V

Set according to pressure sensor specifications

P25.03 Maximum system pressure 0.0~255.0 (175.0)

The maximum pressure required by the system, the command voltage DC10V corresponding to system pressure output, corresponding to the maximum system pressure.

P25.04 Motor type 0~65536H (0000)

Jointly developed by the servo drive manufacturers and servo motor manufacturers, in order to set the parameters (using a parameter required for curing all the parameters set by P03).

When the motor type parameters is nonzero, the following parameters will not be changed:

P02.00 Motor and control mode selection
 P03.00 Motor rated power
 P03.01 Motor rated voltage
 P03.02 Motor rated current
 P03.03 Motor rated frequency
 P03.04 Motor rated rotating speed

P03.08 Motor back-EMF constant

Note: When you select "0", representing that motor type is not formulated, you need to set the parameters yourself.

Description

For the "Comparison Table of Motor Function Code and Motor Type" corresponding to P25.04, please go to Appendix 1 (A.3) for reference.

P25.05 Maximum speed 0~6000 (2000)

Corresponding to the system output flow set the maximum speed of the motor, the set value should be less than 140% of the motor rated speed (P03.04), the value must be less than the maximum speed of the motor.

 P25.06
 Base pressure
 0.0~100.0%(1.0)

 P25.07
 Base flow
 0.0~100.0%(1.0)

Set P12.16 to 256 to enable base pressure and and base flow. After the start pressure, the function is enabled.

P25.06 is the minimum pressure for system running, as a percentage relative to the pressure sensor range (P25.01). P25.07 is the minimum flow for system running, as a percentage relative to the maximum speed (P25.05).

5.2.3 External communication parameters (Group P15)

P15.01 External CANopen baud rate selection 0~3 (1)

External CAN baud rate selection:

0: 125K

1: 250K

2: 500K

3: 1M

P15.02 External CANopen driver station number 0~247 (1)

Master and slave station must choose different address.

P15.03 External CANopen disconnection detection 0~1000 (0) time Set external CAN break detection time, if the drive does not receive data within the set time, it will report failure. P15.04 485 communication configuration 0~0x155 (001) Hundreds place Tens place Unit place Baud rate selection: 0:4800bps 1:9600bps 2:19200bps 3:38400bps 4:57500bps 5:115200bps Data format: 0:1-8-2-N format, RTU 1:1-8-1-E format, RTU 2:1-8-1-O format, RTU Reserved P15.05 485 local address $0 \sim 127(1)$ Identify the current 485 address of the servo drive. P15.06 0.0~1000.0ms (0) 485 local response delay Master and slave station must choose different address. 5.2.4 Multi-pump parallel control parameters (Group P33) P33.00 Internal CAN baud rate selection $0 \sim 3 (3)$ 0: 125 K 1: 250 K 2: 500 K 3: 1 M P33.01 Internal CAN driver station number 0~127 (0) Master and slave station must choose different address. P33.02 Internal CAN disconnection detection time 0~10.0 (0.5) Set internal CAN break detection time, if the drive does not receive data within the set time, it will report failure. P33.03 Parallel flow type $0 \sim 3(0)$

- 0: Single pump
- 1: Single-master multi-slave composite allocation
- 2: Single-master and multiple-slave bypass/parallel flow
- 3: Multiple masters and multiple slaves parallel flow

P33.04 Single master selection 0~1 (0)

When set to 1, the drive is the absolute master in the entire network, and there can only be one absolute master in the entire network.

P33.05 Unit number 0~5 (0)

The unit to which each control node belongs.

P33.06 Node master/slave switch 0~1 (0)

This function is suitable for master/slave switching of multi-master and multi-slave parallel flow nodes.

P33.07 Pump displacement 0~300 (40)

The displacement of the oil pump per revolution.

P33.08 Flow cut-in threshold 0.0~100.0 % (40)

Multiple pumps are in a hydraulic system. When the system flow exceeds the current pump flow cut-in threshold, other pumps will participate in the work.

P33.09 Flow cut-in hysteresis 0.0~100.0 % (2)

Multiple pumps in a hydraulic system are used to prevent the flow from reaching a critical point causing the pumps to start and stop back and forth.

Chapter 6 Basic Steps of Pressure Control Debugging

6.1 Pressure debugging process

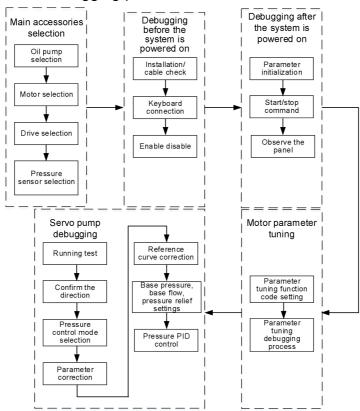


Fig.6-1 Pressure debugging flow chart

6.2 Selection method of main parts of hydraulic servo

6.2.1 Oil pump selection

The size of the oil pump is determined by the output flow Q (L/min) of the oil pump, the pressure P_1 (kgf/cm2) that the system is subjected to, and the maximum speed of the motor N_{max} (rpm). The size of the oil pump is jointly formulated by the manufacturer of the servo drive and the manufacturer of the injection molding machine to facilitate parameter setting (use one parameter to cure all the parameters required for the corresponding model).

Pump pressure selection:Pump rated pressure should be greater than or equal to system pressure P₁ (kgf/cm2).

Pump displacement selection:Pump displacement per revolution (ml/rev)=Q (L/min)×1000 (ml/L)/ N_{max} (rpm). Pump type selection:Please follow the instructions below to select the pump type.

Pump Volumetric Pulsation Pressure Price Noise Reliability Speed type efficiency (stability) (unipolar) Gear Low Low Medium Medium High Low Medium pump Plunger Medium High Low High Low Medium Low pump

High

Table 6-1 Oil pump selection

Low

Medium

High

High

Note

Screw

gmug

High

Medium

The oil pump selection introduced in this section is only for technical related personnel as a selection reference. If you need to set the function code P25.00, please contact the technical staff of our company. If the parameters are arbitrarily set, the equipment will be damaged, and the consequences will be at your own risk.

6.2.2 Motor selection

The size of the oil pump can be obtained through section 6.2.1, so as to obtain the displacement of the oil pump and the pressure that the system needs to bear, which are determined by the speed and torque of the motor.

(1) Motor rated speed selection:

Motor (PMSM) characteristic curve as shown in Fig. 6-2:

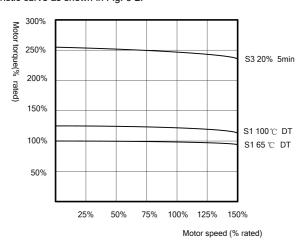


Fig.6-2 Motor characteristic curve

According to Fig.6-2, with the upgrading of the motor speed, motor torque will gradually decline. But when the speed exceeds 150% of rated speed, servo motor gradually saturated, motor torque will decline rapidly, so the speed stage can not be used as servo motor speed period. Therefore, it is recommended to select 140% of the rated speed as the maximum speed of the motor (Nmax (rpm) = N (rpm) × 140%).

□ Note

For better control effect, please select the maximum speed of the motor as 130% of the rated speed.

(2) Motor rated torque selection:

The maximum output power of the injection molding machine: P2max (kW)=P1(kgf/cm2) \times 0.9807 (kgf/cm2/bar) \times Q(L/min)/ 600

Motor maximum output power (convert according to 90% of the total energy conversion efficiency):

 $P3max (kW) = P2max(kW) \times 90\%$

The maximum output torque of the motor:Tmax(Nm) = P3max(kW)×9550/ N(rpm)

According to the motor characteristic curve in Fig. 6-2, it can be observed that the overall working state of the servo motor is between (S1 100°C DT) and (S3 20% 5MIN). Since the the injection molding machine needs continuous high torque output when holding pressure, the torque curve of the servo motor is in a high torque state, which can be observed from the curve in the figure. It is recommended to select a motor type with a maximum torque of 180% of the rated torque.

Motor rated torque: T(Nm)=Tmax(Nm)/180%

Note

If a double displacement plunger pump or a double gear pump is selected, the torque output of the motor can be reduced by reducing the displacement of the oil pump during the holding pressure process.

If the servo motor is in the working state (S3 20% 5MIN), the motor whose maximum torque is 230% of the rated torque can be selected.

6.2.3 Drive selection

Drive capacity selection: After the servo motor selection is completed, you can ask motor suppliers for corresponding motor torque constant value Kt (Nm / A). Therefore, the holding pressure current of the drive can be determined by the formula I(A)=Tmax(Nm)/Kt(Nm/A). According to the principle that this value is less than 150% of the servo drive rated output current, achieve the desired servo drive model and its surrounding parts models.

□ Note

The torque constant value Kt (Nm / A) is related to the servo motor technology, materials and motor rated speed N (rpm).

The selection of motors and drives introduced in this section is only for reference by technical personnel. After completing the motor selection, please refer to Appendix A (A.4) for the motor code set by the servo drive corresponding to the motor type.

Note

If you need to set the function code P25.04, please contact the technical staff of our company. If you set parameters arbitrarily and cause equipment damage, you will be responsible for the consequences.

6.2.4 Pressure sensor selection

After completing the selection of the above oil pump, motor and drive, the pressure and displacement required by the system can be determined. In order to make the system pressure loop form a closed-loop mode, it is necessary to determine the specifications of the pressure sensor according to the pressure and displacement required by the system, and set P25.01 and P25.02. Set P25.03 according to the maximum pressure required by the system. At the same time, set the maximum motor running speed corresponding to the maximum percentage of flow command, and set P25.05.

P25.01	Pressure sensor range	0.0 to 600.0 (250)
P25.02	Output signal mode of the pressure sensor	0 to 3 (3)
P25.03	Maximum system pressure	0.0 to 250.0 (175)
P25.05	Maximum speed	0 to 6000 (2000)

6.3 Debugging before the system is powered on

6.3.1 Determine the installation

Before powering on, relevant personnel are required to observe the connection of each terminal in detail to ensure that all fixed screws are securely locked to prevent slippage during equipment movement. At the same time, it is necessary to observe whether there is a wire head at the connecting line or the pressure line is not flat. If this situation is found, it is necessary to deal with the wire ends in time to prevent the danger of electric shock. Please confirm the following items before turning on the power:

Item	Content
	Confirm whether the power supply is AC380V~480V 50/60Hz
Power supply voltage confirmation	Ensure that the power input terminal (R/S/T) is connected reliably
	Make sure the servo drive and motor are wired correctly
Confirmation of the connection between the output terminal of the servo drive and the motor terminal	Confirm whether the connection between the servo output terminal (U/V/W) and the motor terminal is firm
Confirmation of the connection of the control circuit terminals of the servo drive	Determine whether the connection between the control circuit terminals of the servo drive and other controller devices is reliable
Status confirmation of servo drive control short circuit	Confirm whether the control circuit terminals of the servo drive are all in the OFF state (non-operational state)
Load confirmation	Confirm whether the motor is in no-load state and not connected to the mechanical system

6.3.2 Keyboard connection

When the operation panel is connected, observe whether there is a problem with the LED display screen, simply debug the operation keyboard, and observe whether there is a problem with the keyboard.

6.3.3 Enable disable

In order to ensure the safety of the system during the debugging process, it is necessary to disable the system enable before switching on the three-phase AC power for debugging. When the keyboard is not connected, there are two ways to disable the enable:

Method 1: Disconnect the drive terminal input enable button

Method 2: If the computer of the injection molding machine has a system enable function, and the enable output function is connected to the drive enable terminal, the system enable output should be disabled at this time.

6.4 Debugging after the system is powered on

6.4.1 Parameter initialization

Restore the settings of the servo drive to the factory settings. After initialization, P00.05 will automatically return to zero.

	Parameter initialization		Default value	0
		0	Parameter c	hanging status
P00.05	Setting range	1	Clear fault me	mory information
		2	Restore to lea	ve-factory value
		3	Restore the quick sta	art function group only

0: Parameter changing status

If the parameter value of this function code is set as 0, all the parameters can be changed.

1: Clear fault memory information

If the parameter value of this function code is set as 1, the content of the fault record (P97.15~P97.21) will be cleared.

2: Restore to leave-factory value

If the parameter value of this function code is set as 2, the function codes before P97.15 will be restored to the leave-factory values based on the drive type, except for the user password (P00.01), the drive status display parameters (Group P01) and the motor parameters (Group P03) and P12.04.

3: Restore the quick start function group only

If the parameter value of this function code is set as 3, only the parameters related to the quick running of the drive will be restored.

□ Note

New models can perform parameter initialization settings, and old models can skip this step. If the old model needs to be initialized, it needs to be carried out while retaining the original parameters, which can effectively reduce the risk of equipment damage and personal injury.

6.4.2 Start and stop commands

B00.00	Parameter initialization		Default value	0
P02.02	Running command	0	Keyboa	rd control

channel selection	1	Terminal control
	2	Communication control
	3	Bus control

0: Operation panel running command channel

To start and stop through the RUN and STOP keys on the operation panel.

1: Terminal running command channel

To start and stop through the external control terminals.

2: Serial port running command channel

To start and stop through the serial port.

3: Start and stop in bus mode

The oil pump is controlled via CANopen bus.

6.4.3 Observe panel display

After the power is turned on, the operator display in normal state is as follows:

State	Display	Description
Normal	2.00	The factory default display is the current frequency of the motor 2Hz
Failure	Er.oXX	Servo drive failure shutdown status, display failure type

6.5 Motor parameter tuning

Considering that motor types not shown in the drive function code (P25.04) will be replaced on site. In this way, customers can use the motor tuning function of the drive to complete the tuning of the motor. There are three ways to tune the motor: static auto-tuning, dynamic auto-tuning and all-parameter auto-tuning.

6.5.1 Auto-tuning comparison

Static mode: In this mode, the motor slightly rotates, which can carry light load. During auto-tuning, the system identifies the resistance, inductance and initial angle of motor. After auto-tuning, the motor can rotate normally..

Dynamic mode: In this mode, the motor rotates at a certain speed. During auto-tuning, the back EMF is identified. This mode is not suitable for situations with large load. Thus, during the process, you need to empty the motor load or open the overflow valve. This mode is only for the identification of back EMF. After auto-tuning, the motor needs to do static auto-tuning before it can rotate normally.

All-parameter mode: In this mode, the motor rotates at a certain speed. During auto-tuning, the system identifies the resistance, inductance, back EMF and initial angel of motor. This mode is not suitable for situations with large load. Thus, during the process, you need to empty the motor load or open the overflow valve. After auto-tuning, the motor can rotate normally.

6.5.2 Motor parameter tuning function code setting

P03.00	Motor rated power	0.4~999.9KW
P03.01	Motor rated voltage	0~ rated voltage of drive (P98.04)
P03.02	Motor rated current	0.1~999.9A

P03.03	Motor rated frequency	1.00~3000.0Hz
P03.04	Motor rated rotating speed	0~6000rpm
P03.24	Parameter tuning	0: Disabled
		1: Static auto-tuning
		2: Dynamic auto-tuning
		3: All-parameter auto-tuning

6.5.3 Motor parameter tuning and debugging flowchart

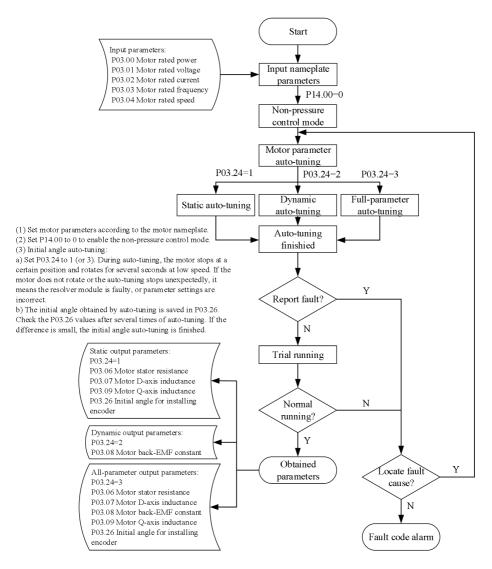


Fig.6-3 Motor parameter tuning flowchart

6.6 Hydraulic servo debugging

6.6.1 Operational testing

After motor tuning is complete, the drive is powered down, then powered on, running motor, start process should be smooth, keyboard display frequency should be small fluctuations around the set value when stable, the current displayed by the drive should be less than 10% of the rated current of the motor when no-load, this shows that both the resolver and the motor are operating normally.

Run at each speed segment, observe the motor operation, appropriate adjust speed loop PI parameters and current loop PI parameters of the drive such that the motor are running smoothly in the high and low speed. Oscillate or purr when motor is running, appropriately weaken speed loop rigidity class (P26.03), system inertia (P26.04), motor inertia (P26.05), and current loop (P12.05 and P12.06).

□ Note

Before the pressure debugging, the motor needs to be tested, please refer to section 4.3.

6.6.2 Confirm the direction

The drive is set to low speed operation at 2HZ (P02.05 = 2.00). Observe the direction of building oil pressure. If the voltage gauge does not detect valid voltage or the motor current is small, the direction of building pressure is incorrect. Then, you need to set P02.03 to 1 to reverse the motor running direction, or swap any two phase wiring of the motor UVW, and repeat the motor parameter tuning steps in Section 6.5 by setting P03.24 to 1 or 3. After the direction is adjusted, if the voltage gauge detects sufficient voltage or the motor current is large enough, it means the motor running direction is the right direction of building oil pressure.

6.6.3 Pressure control mode selection

	Parameter initialization		Default value	0
	P14.00 Pressure control mode	0	Non-pressure	e control mode
P14.00		1	Internal CAN oil pressure	e mode (multi-pump mode)
		2	Pressure of	control mode
		3		le (computer of injection molding chine)

- 0: Non-pressure control mode
- 1: Internal CAN oil pressure mode (multi-pump mode)
- 2: Pressure control mode

Al1 gives the pressure feedback reference, Al2 gives the flow reference, and Al3 gives the pressure reference.

3: External CAN oil pressure mode (computer of injection molding machine)

During pressure control by the servo drive, CANopen gives the pressure and flow references, and Al1 gives the pressure feedback reference.

6.6.4 Parameter correction

6.6.4.1 Pressure reference curve correction

According to the computer set $170 \text{kg/cm}^2 \sim 10 \text{kg/cm}^2$ in turn, observe drive parameter P01.22, based on 10 V, set the corresponding percentage to the function code P10.32(170 kg/cm²), P10.34(160 kg/cm²), P10.36(150 kg/cm²), P10.38(140 kg/cm²), P10.40(130 kg/cm²), P10.42(120 kg/cm²), P10.44(110 kg/cm²), P10.46(100 kg/cm²), P10.48(90 kg/cm²), P10.50(80 kg/cm²), P10.52(70 kg/cm²), P10.54(60 kg/cm²), P10.56(50 kg/cm²), P10.58(40 kg/cm²), P10.60(30 kg/cm²), P10.62(20 kg/cm²), P10.64(10 kg/cm²). When computer set pressure reference to 140 kg/cm², drive keyboard P01.22 value is 7.13V, then the P10.38 value is set to 71.3%

6.6.4.2 Flow reference curve correction

The same as pressure reference curve correction, set $99\% \sim 10\%$ of the flow on the computer in turn, observe drive parameter P01.21, based on 10V, set the corresponding percentage to the function code P10.10(99% flow), P10.12(90% flow), P10.14(80% flow), P10.16(70% flow), P10.18(60% flow), P10.20(50% flow), P10.22(40% flow), P10.24(30% flow), P10.26(20% flow), P10.28(10% flow).

6.6.4.3 Al zero offset automatic correction

Set Al zero offset automatic correction parameter P10.75 to "1", the drive will do Al zero offset auto correction operation once, zero offset value detected by 3 analog channels is written to P10.08, P10.30, P10.66 parameter.

P10.75	Al zero offset automatic correction	0~1
P10.08 Minimum pressure feedback		0.0%~P10.05
P10.30 Minimum reference of flow curve		0.0%~P10.28
P10.66	Minimum reference of pressure curve	0.0%~P10.64

6.6.5 Base pressure, base flow, pressure relief settings

6.6.5.1 Base pressure, base flow settings

Because of the presence of leakage in the pump, when the flow and pressure command is not given by the system, the hydraulic oil in the oil circuit will be back to the fuel tank, causing that air enter the oil circuit, resulting in noise and unstable of system operation, so it should be provided a certain base pressure and base flow. In the standby mode, you can modify P01.42 (Pressure reference) and P01.44 (Flow reference), and adjust P25.06 (Base pressure) and P25.07 (Base flow) to achieve the desired value. First, set P12.16 to 256 to enable base pressure and base flow. After the start pressure, the function is enabled.

P25.06 is the minimum pressure for system running, as a percentage relative to the pressure sensor range (P25.01). P25.07 is the minimum flow for system running, as a percentage relative to the maximum speed (P25.05).

P25.06	Base pressure	0.0%~100%
P25.07	Base flow	0.0%~P25.05

6.6.5.2 Pressure relief settings

The maximum reverse speed when the pressure is unloaded, corresponding to the percentage setting of the maximum speed, used to set the maximum direction running speed of the motor.

P14.10	Reverse speed limit for pressure relief	-100%~100%
--------	---	------------

The larger the pressure relief value is set, the faster the process will be, but if it is too large, the reverse noise of the oil pump will be caused; the smaller the setting value, the slower the pressure relief will be, and the longer the response time will be.

6.6.6 Pressure PID Control

The larger proportional gain (Kp), integral gain (Ki), differential gain (Kd) are, the quicker response becomes, but too fast response easily cause that the servo motor vibrates and injection molding machine movement is unsteady; conversely, the smaller proportional gain (Kp), integral gain (Ki), differential gain (Kd) are, the slower response becomes, and too low response easily cause the pressure control unstable and overshoot.

	P14.02 Pressure control proportional gain Kp ₁		0.000~15.000
Ī	P14.03	Pressure control integral gain Ki ₁	0.000~10.000
ſ	P14.04	Pressure control differential gain Kd ₁	0.000~10.000

In control process of injection molding machine, as the response requirements of the different action are inconsistent, it generally use different PID parameter settings. You can use the terminal No.57 function to switch pressure PID to distinguish "Injection packing action" and "other actions" and perform switchover.

Chapter 7 Parallel Control Scheme of Multiple Oil Pumps

Due to the limitation of the displacement of the oil pump and the power of the motor, the single oil pump system has been unable to meet the flow requirements of large tonnage pressure control in most cases. In order to better solve the problems of insufficient flow, low production efficiency and long process cycle of user products, the entire hydraulic system can complete two or more networking by connecting multiple single oil pump systems in parallel, so as to achieve bypass /parallel flow control, thereby obtaining a pressure control system with large flow. Under field conditions, parallel pumps can be divided into three schemes: single-master and multi-slave compound distribution, single-master and multi-slave bypass /parallel flow, and multi-master and multi-slave schemes.

7.1 Single-master multi-slave compound distribution

The single-master multi-slave composite control structure diagram is shown in Fig. 7-1. See Fig. 7-2 for the wiring method in compound distribution mode. When set to compound distribution, the main drive is responsible for receiving the pressure command, flow command, operation enable signal and pressure sensor signal at the oil outlet of the system sent by the system computer, and controls the pressure and system flow. The main drive in the network can be connected to analog interfaces Al1, Al2 and Al3 or external CAN interfaces CANH-PC, CANL-PC and CANGnd through function code P14.00. When P14.00 is 2, the analog interface is connected to the pressure sensor and the flow and pressure reference terminals of the system computer respectively to receive pressure feedback, flow and pressure command signals; when P14.00 is 3, the external CAN interface is connected to the computer system to receive the flow and pressure command signals of the system computer. The slave drives are connected to each other through the internal CAN interfaces CANH, CANL and CANGnd to realize the interaction of internal signals. The following formula can be used to calculate the flow each drive has to bear, which is called the maximum private flow. The maximum private flow can be calculated by the following formula:

Single pump maximum flow (L/min) = maximum speed (P25.05) \times oil pump displacement per revolution (P33.07)/1000 (L/ml)

Maximum private flow (L/min) = single pump maximum flow (L/min) × flow cut-in threshold ratio (%)

System maximum flow (L/min) = single pump 1 maximum flow (L/min) + single pump 2 maximum flow (L/min) + + single pump N maximum flow (L/min)

System reference total flow (L/min) = system maximum flow (L/min) × system reference flow percentage (%) When the total flow reference of the system computer is less than the maximum private flow of the main drive, the main drive will carry all system flow requirements; when it is greater than the maximum private flow of the main drive, the main drive will provide its own maximum private flow, and then the remaining flow demand is distributed to the slave drive 1; when the remaining flow demand is less than the maximum private flow of the slave drive 1, the slave drive 1 will carry the remaining flow demand; when the remaining flow demand is greater than the maximum private flow of the slave drive 1, the slave drive 1 provides its own maximum

private flow, and provides the remaining flow demand to other slave drives; and so on, until the remaining flow can be completely digested by the remaining slave drives; but if the maximum private flow of the last slave drive is less than the remaining flow, that is, the sum of the maximum private flow of all drives cannot digest the system flow demand, then all drives will distribute the system flow demand proportionally.

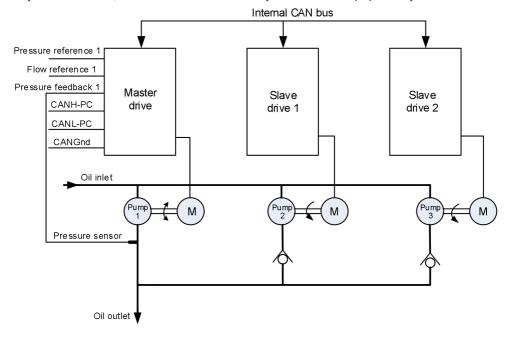
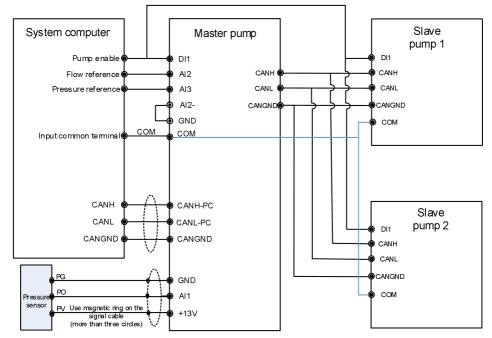



Fig. 7-1 Single-master multi-slave composite distribution structure diagram

Single-master multi-slave composite control terminal wiring diagram

Compound distribution example:

The composite distribution structure diagram is shown in Fig. 7-1. The entire composite distribution hydraulic network consists of 3 hydraulic systems, which are respectively the master drive 1, the slave drive 2, and the slave drive 3. The master drive 1 will calculate the flow that can be digested by itself, and distribute the excess flow to the slave drive 2 in the system. If the slave drive 2 still cannot digest the flow allocated by the system, it will allocate the excess flow to the slave drive 3. If the drive 3 still cannot digest the flow, the system will command the three drives to distribute the system flow demand proportionally.

The settings are shown in Table 7-1. If the computer system sets the percentage of the system reference flow to 20%, the function code setting in the table and the above formula can calculate that the reference flow of the system is 48L, and the maximum private flow of the three drives is 32L. Therefore, the master drive 1 will not be able to digest the 48L flow allocated by the system, and the master drive 1 will allocate the excess 16L flow to the slave drive 2 for digestion. Since the maximum private flow of the slave drive 2 is 48L, it can digest the excess 16L flow, thus slave drive 3 will not need to distribute flow.

Table 7-1 Example of compound distribution function code setting

Drive type			
ction	Master drive 1	Slave drive 2	S

Function code	Master drive 1	Slave drive 2	Slave drive 3
P14.00 (Pressure control mode)	2 (AI) or 3 (CAN communication)	1	1
P25.05 (Maximum speed)	2000	2000	2000
P33.00 (Internal CAN baud rate selection)	3	3	3

P33.01 (Internal CAN communication address)	0	1	2
P33.02 (Internal CAN disconnection detection time)	0.5	0.5	0.5
P33.03 (Parallel flow type)	1	1	1
P33.04 (Single master selection)	1	0	0
P33.05 (Unit number)	0	0	0
P33.06 (Node master/ slave switch)	0	0	0
P33.07 (Pump displacement)	40	40	40
P33.08 (Flow cut-in threshold)	40%	40%	40%
P33.09 (Flow cut-in hysteresis)	2%	2%	2%

7.2 Single master multi-slave pump bypass /parallel flow

There are two control modes for single-master multi-slave pump bypass/parallel flow control, namely bypass flow and parallel flow control mode. The control structure diagram is shown in Fig. 7-3. The wiring method is shown in Fig. 7-4. The control network realizes the switching of the bypass flow or parallel flow control mode by adding a DI2 terminal (No. 21 function) with a bypass /parallel switching input function on each slave drive. When the DI2 terminal is valid, it is in the bypass flow control mode, and each drive is used as an independent single-circuit hydraulic system to complete the flow and pressure control. When the DI2 terminal is invalid, it is in the parallel flow control mode. The control is that the master drive receives the pressure and flow commands given by the computer system, and uses the internal CAN connection of each drive to follow the flow received by the master drive.

The master drive in the network can be connected to analog interfaces Al1, Al2 and Al3 or external CAN interfaces CANH-PC, CANL-PC and CANGnd through function code P14.00. When P14.00 is 2, the analog interface is connected to the pressure sensor and the flow and pressure reference terminals of the system computer respectively to receive pressure feedback, flow and pressure command signals; when P14.00 is 3, the external CAN interface is connected to the computer system to receive the flow and pressure command signals of the system computer. The slave drive are connected to each other through the internal CAN interfaces CANH, CANL and CANGnd to realize the interaction of internal signals.

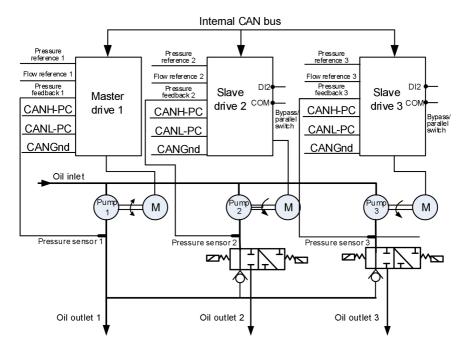


Fig. 7-3 Single-master multi-slave pump bypass/parallel flow structure diagram

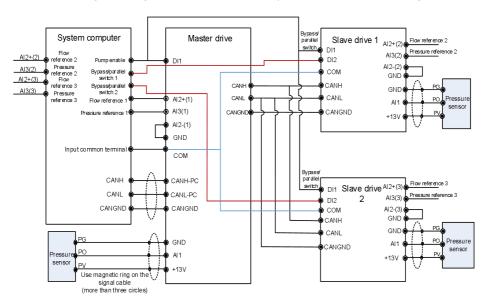


Fig. 7-4 Single-master multi-slave pump bypass/parallel control terminal wiring diagram

Example of single-master multi-slave bypass/parallel flow:

Fig. 7-3 shows the structure diagram of the single-master multi-slave bypass/parallel flow. The entire single-master multi-slave bypass/parallel flow hydraulic network consists of 3 hydraulic systems, which are respectively the master drive 1, the slave drive 2, and the slave drive 3. The settings are shown in Table 7-2. When the DI2 terminal is invalid, it is the parallel flow control mode. After the computer system sets the flow, the slave drive will follow the flow received by the master drive. When the DI2 terminal is valid, it is the bypass flow control mode, and each drive is used as a single independent hydraulic circuit to complete the flow and pressure control.

Table 7-2 Example of function code setting for single-master multi-slave bypass/parallel flow

Drive type Function code	Master drive 1	Slave drive 2	Slave drive 3
P14.00 (Pressure control mode)	2 (AI) or 3 (CAN communication)	1	1
P25.05 (Maximum speed)	2000	2000	2000
P33.00 (Internal CAN baud rate selection)	3	3	3
P33.01 (Internal CAN communication address)	0	1	2
P33.02 (Internal CAN disconnection detection time)	0.5	0.5	0.5
P33.03 (Parallel flow type)	2	2	2
P33.04 (Single master selection)	1	0	0
P33.05 (Unit number)	Invalid	Invalid	Invalid
P33.06 (Node master/ slave switch)	Invalid	Invalid	Invalid
P33.07 (Pump displacement)	Invalid	Invalid	Invalid
P33.08 (Flow cut-in threshold)	Invalid	Invalid	Invalid
P33.09 (Flow cut-in hysteresis)	Invalid	Invalid	Invalid

Note

When DI2 is invalid, the system is in parallel flow state, and the pressure command, flow command and pressure feedback signal received from the drive are invalid.

7.3 Multi-master multi-slave pump bypass/parallel flow

The multi-master and multi-slave pump parallel flow structure diagram is shown in Fig. 7-5. The wiring method is shown in Fig. 7-6. The system consists of a master unit and two slave units. A unit can consist of one or more drives, each of which is defined as a node. There must be one control node in each unit, but there can be multiple or none of the follower nodes. The control node in each unit is responsible for receiving the

pressure command, flow command, operation enable signal sent by the system computer and pressure sensor signal at the oil outlet of the system, and controls the pressure and the total flow of the system.

The control unit in the unit can be selected to access analog interfaces Al1, Al2 and Al3 or external CAN interfaces CANH-PC, CANL-PC and CANGnd through function code P14.00. When P14.00 is 2, the analog interface is connected to the pressure sensor and the flow and pressure reference terminals of the system computer respectively to receive pressure feedback, flow and pressure command signals; when P14.00 is 3, the external CAN interface is connected to the computer system to receive the flow and pressure command signals of the system computer. Each node in each unit is connected to each other through the internal CAN interfaces CANH, CANL and CANGnd to realize the interaction of internal signals.

Example of multi-master multi-slave parallel flow:

The multi-master multi-slave parallel flow structure diagram is shown in Fig. 7-5. The entire multi-master multi-slave parallel flow hydraulic network consists of 5 hydraulic systems, which are the master drive 1, the slave drive 2, the slave/master drive 3, the slave drive 4 and the slave/master drive 5.

Master drive 1 and slave drive 2 are the master unit 1, and slave drive 2 follows master drive 1 during running. Slave/master drive 3 and slave drive 4 are the slave unit 2, and slave drive 4 follows slave/master drive 3 during running. Slave/master drive 5 is the slave unit 3 (since there is only one drive in this unit, it only operates under single closed-loop pressure). In the control system, an additional DI4 terminal (No.56 function) is added in the control part of each slave unit to achieve the switchover from the slave drive to the master drive and to enable the slave pump to follow the second master drive in the unit where the slave drive follows the second master drive. When DI4 is invalid, master drive 1 is defined as the control node, and other drives are defined as following nodes which follows the master drive at the same speed. When all DI4 are valid, master drive 1, slave/master drive 3 and slave/master drive 5 are defined as control nodes, and slave drive 2 and slave drive 4 are defined as following nodes.

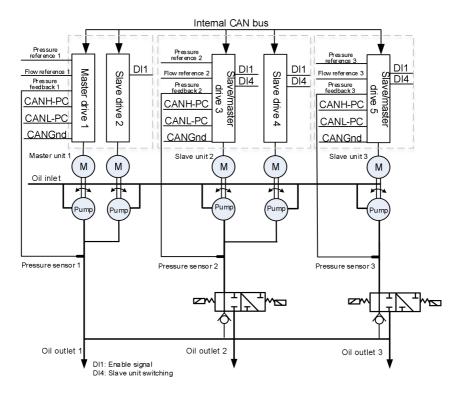
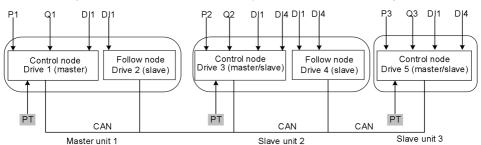



Fig. 7-5 Multi-master multi-slave pump bypass/parallel flow structure diagram

PT: pressure sensor P1~3: pressure reference Q1~3: flow reference DI1: enable signal DI4: Slave unit switching

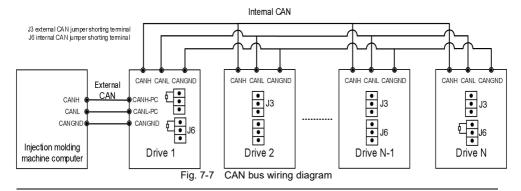

Fig. 7-6 Multi-master multi-slave pump parallel flow terminal wiring diagram

Table 7-3 Multi-master multi-slave parallel flow function code setting example

Drive type Function code	Master drive 1	Slave drive 2	Master/slave drive	Slave drive 4	Master/slave drive 5
P14.00 (Pressure control mode)	2 (AI) or 3 (CAN communication)	1	1	1	1

P25.05 (Maximum speed)	2000	2000	2000	2000	2000
P33.00 (Internal CAN baud rate selection)	3	3	3	3	3
P33.01 (Internal CAN communication address)	0	1	2	3	4
P33.02 (Internal CAN disconnection detection time)	0.5	0.5	0.5	0.5	0.5
P33.03 (Parallel flow type)	3	3	3	3	3
P33.04 (Single master selection)	1	0	0	0	0
P33.05 (Unit number)	0	0	1	1	2
P33.06 (Node master/ slave switch)	0	0	1	0	1
P33.07 (Pump displacement)	Invalid	Invalid	Invalid	Invalid	Invalid
P33.08 (Flow cut-in threshold)	Invalid	Invalid	Invalid	Invalid	Invalid
P33.09 (Flow cut-in hysteresis)	Invalid	Invalid	Invalid	Invalid	Invalid

There are two sets of CAN terminals at the J9 terminal of the drive control board, which are the internal CAN terminals CANH and CANL, the external CAN terminals CANH-PC and CANL-PC. The internal CAN terminal is used for the internal signal transmission of multi-pump parallel control, the CANH and CANL signal terminals on all drive control boards are connected together, the ground terminal CANGND is connected together through the shielding layer, and the internal CAN termination resistance of bus drive 1 and drive N need to be connected (connected via J6B jumper). The external CAN terminal is used to connect the injection molding machine computer or other operation controllers. The drive CANH-PC, CANL-PC and CANGND are connected to the CANH, CANL and CANGND of the injection molding machine computer. At the same time, the external CAN terminal resistance of the drive needs to be connected (connected by J3 jumper). Fig. 7-7 is a schematic diagram of CAN bus wiring.

Note

When connecting the CAN bus, please use a twisted pair shielded cable for connection, which can effectively reduce the interference of external signals.

Chapter 8 Troubleshooting

8.1 Displaying exception and solutions

All possible fault types for MV600J6B are summarized as shown in Table 8-1. Before consulting the service department, the user can perform self-check according to the hints of the table and record the fault symptoms in detail. To seek for service support, please contact the sales person.

Table 8-1 Fault record table

Table 6-1 Fault record table					
Fault code	Fault type	Possible fault cause	Solutions		
		The acceleration time is too short.	Lengthen the acceleration time		
		The motor parameters are incorrect.	Perform the parameter tuning of the motor		
Er.oC1	Acceleration	When instantaneous stop happens, restart the rotating motor	Set the start mode P08.00 as the speed tracking restart function		
Er.oC1	over-current of the drive	PG fault occurs when it is running	Check the PG and its wiring		
		The drive power is too low.	Adopt the drive with high power class		
		V/F curve is improper.	Adjust the V/F curve setting and the manual torque increase		
	Deceleration over-current of the drive	The deceleration time is too short.	Lengthen the deceleration time		
		There is potential energy load or the load inertial torque is large.	Use additionally appropriate dynamic braking components		
Er.oC2		Encoder fault occurs when PG is running	Check the encoder and its wiring		
		The drive power is low.	Adopt the drive with high power class		
		The acceleration/deceleration time is too short.	Lengthen the acceleration/deceleration time appropriately		
	Constant speed	Sudden load change or abnormal load	Check the load		
Er.oC3	over-current of	Low grid voltage	Check the input power supply		
	the drive	Encoder fault occurs when PG is running	Check the encoder and its wiring		
		The drive power is low	Adopt the drive with high power class		
F 114	Acceleration	Abnormal input voltage	Check the input power supply		
Er.oU1	over-voltage of	Acceleration time is too short.	Lengthen the acceleration time appropriately		

Fault code	Fault type	Possible fault cause	Solutions
	the drive	When instantaneous stop happens, restart the rotating motor	Set the start mode P08.00 as the speed tracking restart function
Er.IrF	Input side phase loss	There is phase loss in input R.S.T.	Check the installation wiring Check the input voltage
Er.odF	Output side phase loss	There is phase loss in output U.V.W.	Check the output wiring Check the motor and the cables
		There is interphase short circuit or grounding short circuit in output three phases.	Rewiring and check if the motor insulation is good.
		Instantaneous over-current of the drive	See the over-current solutions
	Power module protection	The duct is blocked or the fan is damaged.	Unblock the duct or replace the fan
		The ambient temperature is too high.	Lower the ambient temperature
Er.drv		The wirings or the plug-in units of the control board loosens.	Check them and rewiring
		Abnormal current waveform caused by output phase loss and so on	Check the wiring
		The auxiliary power supply is damaged; the drive voltage is insufficient.	Seek for service support
		Inverter module bridging conduction	Seek for service support
		Abnormal control board	Seek for service support
		Braking pipe damaged	Seek for service support
		The ambient temperature is too high.	Lower the ambient temperature
	Inverter module	The duct is blocked.	Clean the duct
Er.oH1	heatsink over-temperature	The fan is damaged.	Replace the fan
		The inverter module is abnormal.	Seek for service support
		The ambient temperature is too high.	Lower the ambient temperature
Er.oH2	Rectifier heatsink over-temperature	The duct is blocked.	Clean the duct
	over-temperature	The fan is damaged.	Replace the fan
En al 4	Date and the d	The motor parameters are incorrect.	Perform the parameter tuning of the motor
Er.oL1	Drive overload	The load is too large.	Adopt the drive with higher power

Fault code	Fault type	Possible fault cause	Solutions
		The DC braking amount is too large.	Reduce the DC braking current and lengthen the braking time
		When instantaneous stop happens, restart the rotating motor	Set the start mode P08.00 as the speed tracking restart function
		The acceleration time is too short.	Lengthen the acceleration time
		The grid voltage is too low.	Check the grid voltage
		V/F curve is improper.	Adjust V/F curve and torque increase
		The motor overload protection factor setting is incorrect.	Set the overload protection factor of motor correctly.
		The motor is blocked or the sudden change of load is too large.	Check the load
Er.oL2	Motor overload	The universal motor runs at low speed for a long time, with heavy load.	If long-term low-speed running is required, special motor should be used.
		The grid voltage is too low.	Check the grid voltage
		V/F curve is improper.	Set V/F curve and torque increase correctly
E. EET	Emergency stop or external device fault	Stop suddenly by pressing the STOP key	See the function definition of the STOP key in P00.04
Er.EFT		External fault emergency-stop terminal is enabled.	After the external fault is revoked, release the external fault terminal
Er.EEP	EEPROM read/write fault	The read/write error of the control parameters occurs.	Reset by pressing the STOP/RESET key, seek for service support
		The baud rate is set improperly.	Set the baud rate properly.
	Abnormal remote	Serial port communication error	Reset by pressing the STOP/RESET key, seek for service support
Er.SC1	serial port	The fault alarm parameters are set improperly.	Modify the P15.03 and P97.00 settings
		The host device does not work.	Check if the host device is working and if the wiring is correct.
	Abnormal	The grid voltage is too low.	Check the grid voltage
Er.rLy	Abnormal contactor	The contactor is damaged.	Replace the contactor of the main circuit, seek for service support

Fault code	Fault type	Possible fault cause	Solutions
		The power-up buffer resistance is damaged.	Replace the buffer resistance, seek for service support
		The control circuit is damaged.	Seek for service support
		Input phase loss	Check the input R.S.T. wiring
		The wirings or the plug-in units of the control board loosens.	Check them and rewiring
	Current detection	The auxiliary power supply is damaged.	Seek for service support
Er.CUr	circuit abnormal	The Hall device is damaged.	Seek for service support
		The amplifying circuit is abnormal.	Seek for service support
		The Al analog input voltage is too high.	Reduce the AI analog input voltage to less than 12V
Er.CPU	System	Severely interfered	Reset by pressing STOP/RESET key or install a power filter to the input side of the power supply
Er.CP0	interference	DSP read/write error of the main control panel	Reset by pressing the STOP/RESET key, seek for service support
	Closed loop feedback loss	The parameters for feedback loss are set improperly.	Modify the P14.26 setting
Er.FbL		Feedback wire-break	Rewiring
		The reference of closed loop feedback value is too low.	See the P14.01 setting and increase the feedback reference
Er. EGL	External reference command lost	During the frequency main reference or the torque command selects analog current reference, the analog reference signal is disconnected or too low (less than 2mA).	Check the wiring or adjust the input type of the reference signal
Er.CoP	Operation panel	The operation panel parameters are incomplete or the operation panel version is inconsistent with main control panel version.	Refresh the operation panel data and version, use P00.06=1 for uploading the parameters first and then use P00.06=2 or 3 for downloading.
	copying error	The operation panel EEPROM is damaged.	Seek for service support
Er Tille	Door Tuning	The nameplate parameters of the motor are incorrect.	Set the parameters properly according to the motor nameplate
Er.TUn	Poor Tuning	When reverse running is prohibited, reverse rotating tuning is performed.	Cancel the reverse running prohibition

Fault code	Fault type	Possible fault cause	Solutions
			Check motor wiring
		Tuning overtime	Check the P02.16 (upper limit frequency) and see whether the P02.17 set value is lower than rated frequency.
Er.PG1	PG fault	Resolver amplitude below 7000	Check the P01.41 resolver amplitude, if it is lower than 7000, you need to check whether the resolver wiring or its circuit is normal
		The motor speed exceeds the specified range.	Check whether P25.17 is set properly.
Er.OVS	Overspeed	There is potential load or the load inertia torque change is abrupt.	Select proper dynamic braking components.
		Motor auto-tuning is incorrect.	Set the motor parameters and do auto-tuning again.
5 507	Parameter setting error	Auto-tuning is done when P02.00 is set to 12 or 13.	Set P02.00 to 11 before auto-tuning.
Er.PST		Auto-tuning is done when P14.00 is not set to 0.	Set P14.00 to 0 before auto-tuning.
	Control board 24V power short circuit	Short circuit of P24 and terminal COM	Confirm whether the wiring of P24 and COM is correct
Er.24v		The interface board circuit is damaged.	Replace the interface board, seek for service support
Er.GdF	Grounding short circuit fault	One of the phases (The most likely one is phase U) is grounding short circuited.	Check the grounding short circuit of the output three phase and troubleshoot it.
	Too large speed deviation (DEV) fault	ASR parameters are improper.	Modify the setting of the group P05 function code
Er.dEv		DEV deviation detection value setting is too low.	Modify the DEV detection value setting
	lauit	Heavy load fluctuation	Eliminate the load vibration
Er.Fbo	PID feedback exceeding limit	PID feedback value out of limited range	Check whether the feedback value input voltage is normal, if normal, seek for service support
		The ambient temperature is too high.	Lower the ambient temperature
	Makan	The motor duct is blocked.	Clean the motor duct
Er.oHL	Motor over-temperature	The motor fan is damaged.	Replace the motor fan
		The motor operates at low frequency and large load for a long time.	Add a large fan for the motor to dissipate heat

Fault code	Fault type	Possible fault cause	Solutions	
Er.040	Low-frequency	The load is too large during low-frequency running.	Select a drive with proper power.	
	overload	Motor auto-tuning is incorrect.	Set the motor parameters and do auto-tuning again.	
	A1	Abnormal control circuit	Seek for service support	
Er.AIF	Abnormal Al analog input	The input analog is out of the range and the absolute value is greater than 11V	Check the analog input	
	Inverter module	Abnormal temperature sampling circuit	Seek for service support	
Er.THI	temperature sampling disconnection	The inverter module temperature sampling wire is poorly connected.	Check the inverter module temperature sampling wire connection	
	Rectifier module	Abnormal temperature sampling circuit	Seek for service support	
Er.THr	temperature sampling disconnection	The temperature sampling wire is poorly connected.	Check the temperature sampling wire connection	
	Control board	±10V grounding	Confirm whether the ±10V wiring is correct	
Er.10v	±10V power short circuit	The interface board circuit is damaged.	Replace the interface board, seek for service support	
Er.rEF	Abnormal internal over-current reference	The control board circuit is damaged.	Seek for service support	
		The motor nameplate parameter setting is incorrect.	Set parameters correctly according to the motor nameplate.	
Er.030	Dynamic	The load is too large.	Do auto-tuning with no load or with light load.	
	auto-tuning fault	The suite trusing is timed and	Check the motor wiring.	
		The auto-tuning is timed out.	Check the encoder cables and terminals.	
Er.PIL	Wrong PID limit value setting	The PID lower limit set value exceeds PID upper limit set value	Adjust the PID upper / lower limit set value	
Er.048	Master CAN	The cable between the host controller and the drive CAN communication is disconnected.	Check whether the communication cable is properly connected. Check whether the cable shield is properly	
E1.U48	communication disconnected	Strong interference (rx error)	engaged, and whether the cable is too long. 3. Reverse CANH-PC and CANL-PC.	
		Host controller fault	Troubleshoot the fault of host device.	

Fault code	Fault type	Possible fault cause	Solutions
	Slave CAN communication disconnected	The cable between the master pump and the slave pump is disconnected.	Check whether the communication cable is properly connected.
Er.049		Strong interference (rx error)	Check whether the cable shield is properly engaged, and whether the cable is too long. Reverse CANH and CANL.
		Master pump fault	Troubleshoot the fault of master pump.
Er.050	Master and slave not matched	Group P33 parameters are set incorrectly.	Set the parameters properly according to the multi-pump part.
	Braking resistor overload	Abnormal input voltage	Check the input power supply.
Er.051		Continuous braking is required due to motor fault.	Contact the motor manufacturer.
Er.052	Undervoltage during main circuit running	Abnormal input voltage	Check the input power supply.
Er.053	Business mode timing reached	Alarm is reported when the business mode time is reached.	Contact the after-sales engineer or the distributor to reset the password.

All the possible alarm types for MV600J6B are summarized as shown in Table 8-2. For details, please refer to the group P97 function code setting. If the fault disappears automatically during the running process, the drive will also automatically reset to the status before the alarm (except AL.SC1, for details, please refer to the group P97 function code description).

Table 8-2 Alarm code table

Alarm code	Alarm type	Possible alarm causes	Solutions
		The motor parameters are incorrect.	Perform the parameter tuning of the motor
		The load is too large.	Adopt the drive with higher power
AL.oL1	Drive overload	The DC braking amount is too large.	Reduce the DC braking current and lengthen the braking time
		When instantaneous stop happens, restart the rotating motor	Set the start mode P08.00 as the speed tracking restart function
		The acceleration time is too short.	Lengthen the acceleration time
		The grid voltage is too low.	Check the grid voltage
		V/F curve is improper.	Adjust V/F curve and torque increase

Alarm code	Alarm type	Possible alarm causes	Solutions	
		The motor overload protection factor setting is incorrect.	Set the overload protection factor of motor correctly.	
		The motor is blocked or the sudden change of load is too large.	Check the load	
AL.oL2	Motor overload	The universal motor runs at low speed for a long time, with heavy load.	If long-term low-speed running is required, special motor should be used.	
		The grid voltage is too low.	Check the grid voltage	
		V/F curve is improper.	Set V/F curve and torque increase correctly	
AL.EEP	EEPROM read/write fault	The read/write error of the control parameters occurs.	Reset by pressing the STOP/RESET key, seek for service support	
		The baud rate is set improperly.	Set the baud rate properly.	
	Abnormal serial port communication	Serial port communication error	Reset by pressing the STOP/RESET key, seek for service support	
AL.SC1		The fault alarm parameters are set improperly.	Modify the P15.03 and P97.00 settings	
		The host device does not work.	Check if the host device is working and if the wiring is correct.	
		The grid voltage is too low.	Check the grid voltage	
	Abnormal contactor	The contactor is damaged.	Replace the contactor of the main circuit, seek for service support	
AL.rLy1		The power-up buffer resistance is damaged.	Replace the buffer resistance, seek for service support	
		The control circuit is damaged.	Seek for service support	
		Input phase loss	Check the input R.S.T. wiring	
		The parameters for feedback loss are set improperly.	Modify the P14.26 setting	
AL.FbL	Closed loop feedback loss	Feedback wire-break	Rewiring	
	TOCUDACK 1055	The reference of closed loop feedback value is too low.	See the P14.01 setting and increase the feedback reference	

Alarm code	Alarm type	Possible alarm causes	Solutions
AL.EGL	External reference command lost	During the frequency main reference or the torque command selects analog current reference, the analog reference signal is disconnected or too low (less than 2mA).	Check the wiring or adjust the input type of the reference signal
AL.24v	Control board 24V power short circuit	Short circuit of P24 and terminal COM	Confirm whether the wiring of P24 and COM is correct
		The interface board circuit is damaged.	Replace the interface board, seek for service support
AL.Fbo	Closed loop feedback loss	The parameters for feedback loss are set improperly.	Modify the P14.26 setting
AL.PIL	Wrong PID limit value setting	The PID lower limit set value exceeds PID upper limit set value	Adjust the PID upper / lower limit set value

Please carefully choose the fault alarm function; otherwise, the accident range extension, the human injury and the property damage may be caused.

8.2 Common faults and solutions

Table 8-3 Operation exception and solutions

Symptoms	Conditions	Possible causes	Solutions
The operation panel has no response.	An individual key or each key has no response.	The locking function of the operation panel takes effect. The wires of the operation panel have poor contact. The keys of the operation panel are	In stop or running status, press the ENTER/DATA key and retain pressure on it, then press the V key successively for three times, after that, you can unlock it. Completely power off the drive and then power it up Check the wires and perform the hot plug again Replace the operation panel or seek for
		damaged.	service support
The function code can not	Can not be modified in running status	The function code can not be modified in running status.	Modify it in the stop status

Symptoms	Conditions	Possible causes	Solutions
be modified.	A portion of function	The function code P00.03 is set as 1 or 2.	Set the P00.03 as 0
	code can not be modified.	The function code is actual detection value.	Actual parameters can not be changed by users.
	There is no response when MENU/ESC key is pressed.	The locking function of the operation panel takes effect or others.	See the solutions to "the operation panel has no response"
	Can not enter the		Input the user password correctly
	editing state after pressing the MENU/ESC key; the function code status display is 0000.	User password is set.	Seek for service support
		Fault alarm occurs.	Find out the fault causes and reset the fault
	In the case that there is no stop command, the drive stops automatically and the run LED is off.	A single cycle of the simple PLC is completed.	Check the PLC parameter setting
		There is power supply interruption.	Check the power supply
		Running command channel switches	Check the relevant function code setting of the operation and running command channel
		Too large DEV	Modify the DEV detection value setting
		The positive/negative logic of the control terminals changes.	Check if the P09.15 setting corresponds with the requirements
The drive stops unexpectedly	In the case that there is no stop command, the	Fault resets automatically.	Check the fault auto reset setting and find out the fault causes
during		Simple PLC pause	Check PLC pause functional terminal
operation.		External interrupt	Check the external interrupt setting and find out the fault source
	motor stops	The set frequency is 0.	Check the set frequency
	automatically and the drive run indicator light is on (running at zero frequency).	The startup frequency is higher than the set frequency.	Check the startup frequency
		There is something wrong with the skip frequency setting.	Check the skip frequency setting
		The closed loop output is negative when the reverse running is prohibited.	Check the P14.22 and the P08.18 setting

Symptoms	Conditions	Possible causes	Solutions
		Enable the "disabling forward run" terminal during forward run process	Check the terminal function setting
		Enable the "disabling reverse running" terminal during reverse running process	Check the terminal function setting
		The frequency adjustment setting is 0.	Check the P02.11 and the P02.12 setting
		Transient low-voltage compensation is applied when power-fault restart and the power supply voltage is too low.	Check the power-fault restart function setting and the input voltage
		The terminal with the coast-to-stop function is enabled.	Check the coast-to-stop terminal
		The "disabling run" terminal of the drive is enabled.	Check the "disabling run" terminal of the drive
		The terminal with the external stop function is enabled.	Check the terminal with the external stop function
The drive does not work.	The drive does not work after the run key is pressed and the running LED is off.	Under the three-wire control mode, the terminal with the three-wire operation control function is not closed.	Set and close the three-wire operation control terminal
		Fault alarm occurs.	Troubleshoot
		The virtual terminal function of the host device is set improperly.	Cancel the virtual terminal function of the host device or set the function properly through the host device, or modify the P09.15 setting
		The forward/reverse logic of the input terminal is set improperly.	Check the P09.14 setting
When the drive is	The thyristor or the	Since the thyristor or the contactor is not closed, when the drive runs	
started, the report -LU-runs immediately.	contactor disconnects and the drive load is large.	with large load, the DC bus voltage of the main circuit will drop; the drive will display -LU- first and will not display Er.JCF fault.	Run the drive after the thyristor or the contactor is closed completely

8.3 Fault source analysis

As shown in Fig. 8-1 below, the hydraulic servo system mainly consists of a permanent magnet synchronous motor, a motor rotor position/speed sensor (resolver), an oil pump coaxially connected between the servo drive and the servo motor, and a pressure sensor that detects the hydraulic pressure of the system.

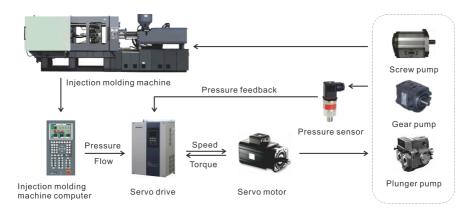


Fig. 8-1 Injection molding machine hydraulic servo system composition

In most cases, all components (including connecting wires) appearing in the above block diagram can be considered as the source of fault. Familiarity with the distribution of faults facilitates a systematic and comprehensive analysis of faults, so that the source of the fault can be found quickly and accurately. The following figure shows the distribution of system faults:

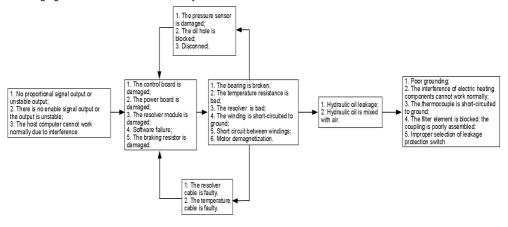
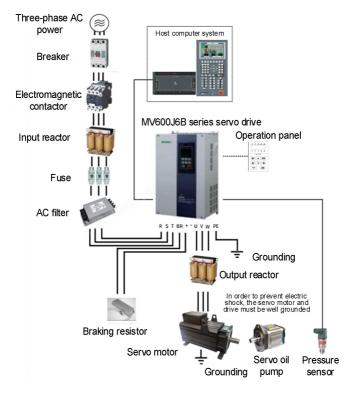



Fig. 8-2 Fault analysis of hydraulic servo system

Appendix A Optional Components

A.1 Peripheral components

Attached Fig. A-1 Peripheral electrical components diagram

Attached Table A-1 Instructions for the use of MV600J6B peripheral components

Accessory name	Installation position	Description
		Short-circuit breaker: Cut off the power supply when the downstream equipment is overcurrent to prevent accidents.
Breaker	Between power supply and drive input side	Leakage protection circuit breaker: The drive may generate high-frequency leakage current when working. In order to prevent electric shock accidents and induced electric fires, please choose and install a suitable leakage protection circuit breaker according to the site conditions.
(Electromagnetic) Contactor	Between air and drive input side	During the power-on and power-off operation of the drive, frequent power-on and power-off operations (interval time not less than 1 hour) or direct start-up operations should be avoided through the contactor.
Input reactor	Drive input side	Improve the power factor of the input side; Effectively eliminate high-order harmonics on the input side, prevent other equipment damage due to voltage waveform distortion; eliminate input current imbalance caused by power supply phase imbalance.

Fuse	Between power supply and drive input side Prevent accidents due to short circuits, and protect subsequent semiconductor devices.	
AC filter	Drive input side	Reduce the external conduction and radiation interference of the drive; reduce the conduction interference from the power supply end to the drive, and improve the anti-interference ability of the drive.
Braking resistor	All models	The motor consumes regenerative energy through the braking resistor during deceleration.
Output reactor	Between the drive output side and the	The output side of the drive generally contains more high-order harmonics. When the distance between the motor and the drive is long, there is a large distributed capacitance in the line. One of the harmonics may resonate in the loop, which has two effects: a) Destroy the insulation performance of the motor, which will damage the
(du/dt filter)	current, mounted close	motor for a long time.
	to the drive	b) Large leakage current is generated, causing frequent protection of the drive. Generally, the distance between the drive and the motor is more than 100m, it is recommended to install the output
Output magnetic ring Mounted close to the drive on the output side of the drive		The output magnetic ring of the AC reactor is mainly used to reduce the harmonic current.
Host computer system Part of the control signal is connected to the drive		The host computer system mainly controls the action of the whole machine, sends various instructions to the drive, and exchanges information with the drive.
Servo motor Drive output side		Please select the suitable motor according to the recommendation.
Servo oil pump Connect to servo motor		Provide flow and pressure to hydraulic systems.
Pressure sensor	Installed on the oil circuit of the oil port, the feedback signal is connected to the drive	Provide hydraulic circuit pressure feedback analog signal.

A.2 AC input reactor selection

The AC input reactor is mainly used to reduce the harmonics in the input current. As an optional accessory, an external reactor can be installed when the application environment has high harmonic requirements. The recommended manufacturers and models of input reactors are shown in the table below:

Attached Table A-2 Recommended model of AC input reactor

Drive model	Reactor model	Rated power (KW)	Rated inductance (mH)
MV600J6B-4T5.5	MACL-5.5KW-R	5.5	0.93
MV600J6B-4T7.5	MACL-7.5KW-R	7.5	0.7
MV600J6B-4T11	MACL-11KW-R	11	0.46
MV600J6B-4T15	MACL-15KW-R	15	0.35
MV600J6B-4T18.5	MACL-18.5KW-R	18.5	0.28
MV600J6B-4T22	MACL-22KW-R	22	0.233
MV600J6B-4T30	MACL-30KW-R	30	0.184
MV600J6B-4T37	MACL-37KW-R	37	0.155
MV600J6B-4T45	MACL-45KW-R	45	0.116
MV600J6B-4T55	MACL-55KW-R	55	0.0935
MV600J6B-4T75	MACL-75KW-R	75	0.074
MV600J6B-4T90	MACL-90KW-R	90	0.066
MV600J6B-4T110	MACL-110KW-R	110	0.056
MV600J6B-4T132	MACL-132KW-R	132	0.0483
MV600J6B-4T160	MACL-160KW-R	160	0.0424

A.3 Braking resistor configuration

Attached Table A-3 Braking resistor configuration

Power kW	Braking unit	Recommended braking resistor power kW	Recommended braking resistor resistance Ω	Minimum braking resistor resistance Ω
5.5		1	45	35
7.5		1	45	35
11		1.5	32	25
15		1.5	32	25
18.5		2.5	25	20
22	Built-in	2.5	20	16
30	Duiit-iii	3	20	16
37		4	16	12
45		5	16	12
55		6	9	7
75		8	9	7
90		10	7	5
110	MDBU-4-132	12	6	5
132	MDBU-4-132	14	6	5
160	MDBU-4-200	15	4	3

Description

The main functions of the built-in braking unit:

1. Braking action voltage and braking rate can be adjusted by function code; 2. Braking resistor short circuit protection; 3. Radiator overheating protection; 4. Abnormal alarm indication of braking IGBT module;

Note

The connecting wire between the braking resistor and drive should be within 5 meters, If it is longer than 5m, twisted pair wire shall be adopted. The maximum wire length is 10m.

A.4 Servo motor selection

The motor codes in Attached Table A-4 are jointly formulated by the servo drive manufacturer and the servo motor manufacturer, so that the motor parameters of group P03 can be solidified only by entering the motor code into the function code of P25.04. When the P25.04 motor type function code is not zero, the following function codes cannot be changed:

Function code	Name
P02.00	Motor and control mode selection
P03.00	Motor rated power
P03.01	Motor rated voltage
P03.02	Motor rated current
P03.03	Motor rated frequency
P03.04	Motor rated rotating speed
P03.08	Motor back-EMF constant

Note

When P25.04 motor type function code selects "0", it means that the motor type has not been specified, and it is necessary to complete the tuning of the motor parameters of group P03 through P03.24 motor tuning.

Attached Table A-4 Servo motor selection table

Motor model (Megmeet)	Motor code
XST2-20F-045-15RH42	20455
XST2-20F-043-17RH42	20437
XST2-20F-042-20RH42	20420
XST2-20F-068-15RH42	20685
XST2-20F-064-17RH42	20647
XST2-20F-065-20RH42	20650
XST2-20F-079-15RH42	20795
XST2-20F-074-17RH42	20747
XST2-20F-075-20RH42	20750
XST2-20F-090-15RH42	20905
XST2-20F-086-17RH42	20867
XST2-20F-085-20RH42	20850
XST2-20F-114-15RH42	21145
XST2-20F-108-17RH42	21087
XST2-20F-107-20RH42	21070
XST2-20F-135-15RH42	21355
XST2-20F-134-17RH42	21347
XST2-20F-129-20RH42	21290
XST2-20F-150-15RH42	21505
XST2-20F-149-17RH42	21497
XST2-20F-147-20RH42	21470
XST2-20F-167-158H42	21675
XST2-20F-162-17RH42	21627
XST2-20F-163-20RH42	21630
XST2-26F-188-15RH48	21885
XST2-26F-184-17RH48	21847
XST2-26F-184-20RH48	21840
XST2-26F-217-15RH48	22175
XST2-26F-213-17RH48	22137
XST2-26F-214-20RH48	22140
XST2-26F-244-15RH48	22445
XST2-26F-239-17RH48	22397
XST2-26F-240-20RH48	22400
XST2-26F-270-15RH48	22705
XST2-26F-262-17RH48	22627
XST2-26F-265-20RH48	22650
XST2-26F-288-15RH48	22885
XST2-26F-285-17RH48	22857
XST2-26F-283-20RH48	22830
XST2-26F-315-15RH48	23155
XST2-26F-310-17RH48	23107

XST2-26F-295-20RH48 22950 XST2-26F-335-15RH48 23355 XST2-26F-330-17RH48 23307 XST2-26F-321-20RH48 23210 XST2-26F-355-15RH48 23555 XST2-26F-355-15RH48 23507 XST2-26F-350-17RH48 23507 XST2-26F-375-158H48 23755 XST2-26F-375-158H48 23755 XST2-26F-369-17RH48 23697 XST2-26F-369-17RH48 23640 XST2-26F-394-15RH48 23945 XST2-26F-394-15RH60 XST2-26F-394-15RH60 XST2-26F-394-15RH60 XST2-26F-397-17RH48 23877		
XST2-26F-330-17RH48 23307 XST2-26F-321-20RH48 23510 XST2-26F-355-15RH48 23555 XST2-26F-350-17RH48 23507 XST2-26F-347-20RH48 23470 XST2-26F-375-158H48 23755 XST2-26F-369-17RH48 23697 XST2-26F-369-17RH48 23697 XST2-26F-364-20RH48 23640 XST2-26F-394-15RH48 23945 XST2-26F-394-15RH60 23877	XST2-26F-295-20RH48	22950
XST2-26F-321-20RH48 23510 XST2-26F-355-15RH48 23555 XST2-26F-350-17RH48 23507 XST2-26F-347-20RH48 23470 XST2-26F-375-158H48 23755 XST2-26F-369-17RH48 23697 XST2-26F-364-20RH48 23640 XST2-26F-394-15RH48 23945 XST2-26F-394-15RH60 XST2-26F-387-17RH48 23877	XST2-26F-335-15RH48	23355
XST2-26F-355-15RH48 23555 XST2-26F-350-17RH48 23507 XST2-26F-347-20RH48 23470 XST2-26F-375-158H48 23755 XST2-26F-369-17RH48 23697 XST2-26F-364-20RH48 23640 XST2-26F-394-15RH48 23945 XST2-26F-394-15RH60 23877	XST2-26F-330-17RH48	23307
XST2-26F-350-17RH48 23507 XST2-26F-347-20RH48 23470 XST2-26F-375-158H48 23755 XST2-26F-369-17RH48 23697 XST2-26F-364-20RH48 23640 XST2-26F-394-15RH48 23945 XST2-26F-394-15RH60 23877	XST2-26F-321-20RH48	23210
XST2-26F-347-20RH48 23470 XST2-26F-375-158H48 23755 XST2-26F-369-17RH48 23697 XST2-26F-364-20RH48 23640 XST2-26F-394-15RH48 23945 XST2-26F-394-15RH60 23877	XST2-26F-355-15RH48	23555
XST2-26F-375-158H48 23755 XST2-26F-369-17RH48 23697 XST2-26F-364-20RH48 23640 XST2-26F-394-15RH48 23945 XST2-26F-394-15RH60 23877	XST2-26F-350-17RH48	23507
XST2-26F-369-17RH48 23697 XST2-26F-364-20RH48 23640 XST2-26F-394-15RH48 23945 XST2-26F-394-15RH60 XST2-26F-387-17RH48 23877	XST2-26F-347-20RH48	23470
XST2-26F-364-20RH48 23640 XST2-26F-394-15RH48 23945 XST2-26F-394-15RH60 23877	XST2-26F-375-158H48	23755
XST2-26F-394-15RH48 XST2-26F-394-15RH60 XST2-26F-387-17RH48 23877	XST2-26F-369-17RH48	23697
XST2-26F-394-15RH60 23945 XST2-26F-387-17RH48 23877	XST2-26F-364-20RH48	23640
XST2-26F-394-15RH60 XST2-26F-387-17RH48 23877	XST2-26F-394-15RH48	23045
23877	XST2-26F-394-15RH60	20040
VOTO 00F 007 47BU00	XST2-26F-387-17RH48	23877
XS12-26F-387-17RH6U	XST2-26F-387-17RH60	20011
XST2-26F-380-20RH48 23800	XST2-26F-380-20RH48	22900
XST2-26F-380-20RH60 25000	XST2-26F-380-20RH60	23000
XST2-26F-450-20RH48 24500	XST2-26F-450-20RH48	24500
XST2-26F-450-20RH60 24500	XST2-26F-450-20RH60	24300

Motor model (Physis motor)	Motor series	Motor code
	1004F	31045
	1004F	31042
	1007F	31075
	1007F	31072
	1010F	31005
U310F (SMPM)	1010F	31002
	1013F	31035
	1013F	31032
	1310F	31315
	1310F	31312
	1320F	31325
	1320F	31322
	1330F	31335
U313F (SMPM)	1330F	31332
	1340F	31345
	1340F	31342
	E01004F	10045
	E01004F	10042
	E01005F	10055
	E01003F	10052
	E01007F	10075
	E01007F	10072
	E01008F	10085
	E01008F	10082
E010F (IPM)	E01010F	10105
	EUTUTUF	10102
	E01012F	10125

		10122
	E01013F	10135
	201013F	10132
	E01215F	12155
	E01213F	12152
	E01220F	12205
	E01220F	12202
	E01225F	12255
	E01223F	12252
F012 F (IDM)	E01230F	12305
E012F (IPM)	E01230F	12302
	E01235F	12355
	2012331	12352

Description

If you need the physical parameters of the motor, you can refer to our motor selection manual for the motor model and motor series in Attached Table A-4.

□ Note

Some peripheral electrical components in Attached Fig. A-1 need to be selected according to the actual site environment. The above are the AC input reactors, braking resistor configurations and servo motor types recommended by our company. If the user needs other corresponding components, please refer to the accessories selection introduced in section 6.2. If you still have questions, please call us.

Appendix B The Use of Megdrive Studio in MV600J6B

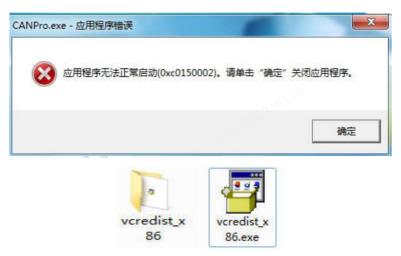
B.1 Software Megdrive Studio installation and startup

B.1.1 Hardware requirements

Need to configure a PC or laptop and Micro-USB, Micro-USB is connected to the J10 terminal in the servo drive

Attached Fig.B-1 Micro-USB

B.1.2 Install Megdrive Studio software


Open the MDS.smart host computer installer folder, as shown below:

Attached Fig.B-2 Install software execution files

The installation steps are as follows:

- 1.Double-click setup.exe to install. After installing this program, the computer may prompt you to download and install Microsoft's Microsoft.NET Framework X (if the computer does not have the framework program installed), you need to allow the download and installation before it can be installed correctly.
- 2. After the installation is complete, a shortcut to the installer will be generated on the desktop. Since some dynamic link libraries in the software depend on the VC2008 runtime library, if this library is not installed in the computer, double-click to open it, and a prompt "The application cannot start normally 0x0150002" will pop up, install and download the x86 version of the VC2008 library, and install the VC2008 library file. After that, double-click the shortcut to open it.

Attached Fig.B-3 Installation software operating environment

3. If the installation above steps are completed, the software will be able to be used normally.

B.1.3 Install driver software

Connect the USB-CAN adapter, find the driver corresponding to the PC or laptop from the driver folder and install it.

Attached Fig.B-4 Install the usb-driver file

B.2 Servo parameter setting and software interface setting

After completing the setting of the servo drive, open the software Megdrive Studio, and you will enter the interface of Attached Fig.B-5. First connect the USB cable to the USB terminal of J6B, and then press to set the drive model as: "Drive_J6B", and then correctly select the USB serial port number connected to J6B, and the communication address and baud rate are connected by default.

Attached Fig.B-5 Communication parameter setting

B.3 Function description of MV600J6B in Megdrive Studio

B.3.1 Megdrive Studio interface introduction

Megdrive Studio interface consists of menu bar, toolbar and status bar. Various functions in the menu bar and toolbar can be selected, such as: connection settings, oscilloscope, parameter management, and instructions for use.

Attached Fig.B-6 Megdrive Studio interface introduction

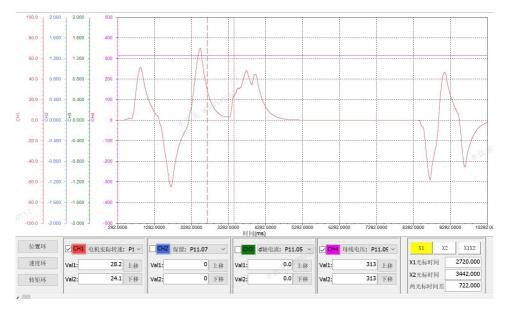
Description

For more in-depth understanding, please click on the help ? in the software to view.

B.3.2 Oscilloscope function introduction

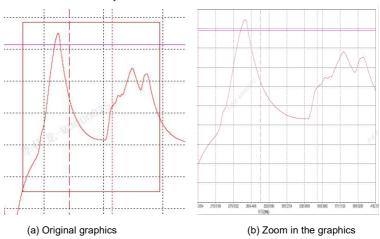
The oscilloscope toolbar is composed of oscilloscope running, oscilloscope pause, saving oscilloscope data, opening oscilloscope data, setting oscilloscope channel, saving waveform picture, moving waveform right and left. Waveform area: Displays the real-time waveform of the selected parameter.

Attached Fig.B-7 Oscilloscope function introduction 1


Channel setting and data display (display channel 1, channel 4 waveform):

Attached Fig.B-8 Oscilloscope function introduction 2

Check the channel to display the waveform, uncheck it to not display; each channel can move the waveform up or down independently;


Cursor: Cursor X1 or X2 can be selected individually, or cursor X1 and X2 can be selected at the same time After the cursor is selected, press "CTRL" + the left mouse button to move the cursor quickly, and the currently selected cursor can be fine-tuned by pressing the left and right arrows (\leftarrow , \rightarrow). The cursors display the current timeline time and the current value at each channel's cursor position.

Attached Fig.B-9 Oscilloscope function introduction 3

Waveform zoom: Press and hold the left button, draw a zoom-in rectangle from the upper left to the lower right, and release to complete the zoom in the rectangular area.

Waveform zoom out: Double-click any area to zoom out.

Attached Fig.B-10 Oscilloscope function introduction 4

B.3.3 Parameter editing function introduction

The parameter editing toolbar consists of opening the CSV parameter file, saving the file to CSV, downloading the servo parameters and reading from the servo parameters. Professionals who are familiar with MV600J6B are recommended to use this function, which is convenient for multi-platform debugging. When a model is debugged, connect the servo drive to the software, upload the data to the software through the servo drive, and generate a CSV file for saving. Then, connect to other models in the same way, and import the CSV file you just saved to other platforms. After such repeated operations, the rapid debugging of multiple platforms can be quickly completed.

Function: parameter reading and writing, parameter saving and importing

Open the parameter editor interface:

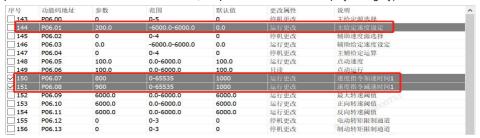
- (1)Click "Parameter Edit" in the menu bar, and then select the "Parameter Editor" option.
- @Click the toolbar icon "P. Parameter Editor" to open it. The parameter editor interface is as follows:

Attached Fig.B-11 Parameter editing function introduction

Directory tree: Display the parameter groups supported by the current servo;

Operating tools: tools for reading and writing parameters;

Upload and download parameters:


- ①Select the parameter group of the directory tree, and select the operation tool as required (take reading the parameters of this group as an example):
- ②After clicking the selected tool, there will be a progress bar prompt, as shown below (if the number of selected parameters is small, it may not appear):

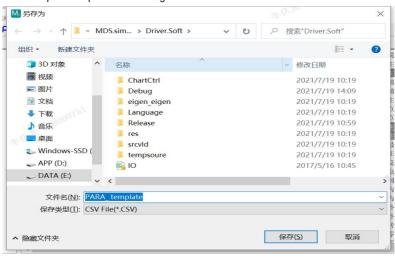
0	P06.07	1000	0-65535	1000	运行史改
1	P06.08	1000	0-65535	1000	运行更改
2	P06.09				运行更改
3	P06.10	0000.0	0.0 0000.0	0000.0	运行更改
4	P06.11	6000.0	0.0-6000.0	6000.0	运行更改
5	P06.12	0	0-3	0	停机更改

③After the parameter reading is completed, the following prompt will appear:

(4) Click any group of parameters in the directory tree to refresh the interface (the current value of the parameter is different from the default value, the parameter row will be displayed in gray).

Parameter modification:

①Open the directory tree, select the parameter group, and then double-click the parameter to be modified, the parameter modification interface will pop up (drop-down box or value modification):



2 Modify the parameters as needed, and click Download.

Parameters save (save to csv file):

- (1)Click the Save button
- 2In the pop-up save interface, select the file save path and name the file name
- 3 Click Save to complete the parameter saving

Parameters open (open csv file):

- ①Click the Open button
- ②Find the required file in the pop-up open interface and click to open

3 Click the directory tree to refresh the interface and wait for the subsequent operations

Note

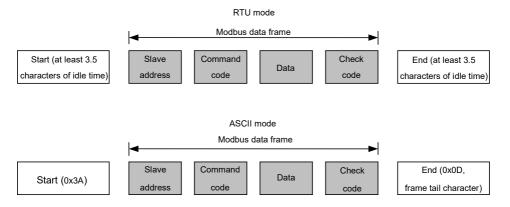
When downloading data, make sure that the debugged data is correct and safe. If there is any wrong operation, the consequences will be at your own risk.

Appendix C Modbus protocol

C.1 Networking mode

There are two networking modes: single master / multiple slave mode and single master / single slave mode.

C.2 Interface mode


RS485 interface: asynchronous and half-duplex. Default: 1-8-N-2, 9600 bps, RTU. For the parameter setting, refer to Group P15.

C.3 Communication mode

- 1. The communication protocol of the drive is Modbus protocol, which supports common register reading and writing.
- 2. The drive is the slave station, adopting master/slave point-to-point communication. When the master sends the command via a broadcast address, the slave will not response.
- 3. In multiple units communication or long-distance communication, parallel connecting the resistance of 100 to 120 ohm with the positive end and negative end of the communication signal line of the master station can enhance the immunity to interference.
- 4. MV600J6B provides the RS485 interface only. If the communication interface of external device is RS232, an RS232/485 conversion device is needed.

C.4 Protocol format

Modbus protocol supports both RTU and ASCII. The corresponding format is shown in Attached Fig.C4-1.

Attached Fig.C4-1 Modbus protocol format

Modbus adopts the "Big Endian" encoding mode, which sends the high bytes first and then sends the low bytes.

1 RTU mode

In the RTU mode, the larger value between the function code value and the Modbus internal conventional value shall be selected as the idle time between frames. The minimum idle time value between frames under the Modbus internal convention is as follows: the idle time that the frame header and frame tail pass the bus shall not be less than 3.5 characters to define the frame. The data check adopts CRC-16 for the whole information, and high and low bytes of the checksum can only be sent after exchange. For the specific CRC check, refer to the CRC example after the protocol description. Note that at least 3.5 characters of the bus idle time shall be kept between frames and there is no need to accumulate the start and end idle time for such bus idle time.

In the example below, the RTU mode is used to read the parameters of the internal register 0101 (P01.01) of No.5 slave.

Request frame:

Slave	Command	Data Check cor						
address	code	Register	address	Number of	bytes read	Check	code	
0x05	0x03	0x01	0x01	0x00	0x01	0xD5	0xB2	

Response frame:

01	0	D				
Slave	Command code	Number of bytes responded	Register	content	Check	code
0x05	0x03	0x02	0x13	0x88	0x44	0xD2

In the above table, the check code is the CRC check value. For the CRC check computing method, refer to the following text.

2. ASCII mode

In the ASCII mode, the frame header is "0x3A", and the frame tail is "0x0D" or "0x0A" by default. The frame tail can also be set by the user. In this mode, except for the frame header and frame tail, all the remaining data bytes are sent in the ASCII code, firstly high 4 bits, and then low 4 bits. In the ASCII mode, the data is 7 bits long. For "A" to "F", the ASCII code with uppercase letters is used. At this time, the data is checked by LRC, which covers the information part from the slave computer address to the data. The checksum equals the complement of all characters and (discard carry) participating in the checksum data.

The following example is used to write 4000 (0xFA0) to the internal register 0201 (P02.05) of slave 5 in the ASCII mode.

Request frame:

	Frame	Sla	ave	Comi	mand				Da	ta				Check	eck	_	
	header	add	ress	со	de	Re	egister	addre	ss	٧	/ritten	conte	nt	со	de	Fram	e tail
Character	:	0	5	0	6	0	2	0	1	0	F	А	0	4	3	CR	LF
ASCII	3A	30	31	30	36	30	32	30	31	30	46	41	30	34	33	0D	0A

The checksum is the LRC checksum, which equals the complement of (05+06+02+01+0x0F+0xA0). Response frame:

	Frame	Sla	ave	Com	mand	nd Data					Ch	eck	_				
	header	add	ress	со	de	Re	egister	addre	ss	٧	/ritten	conte	nt	со	de	Fram	e tali
Character	:	0	5	0	6	0	2	0	1	0	F	Α	0	4	3	CR	LF
ASCII	3A	30	31	30	36	30	32	30	31	30	46	41	30	34	33	0D	0A

The drive can set different response delays through the function code to meet the specific needs of various master stations. The actual response delay is not less than 3.5 characters for the RTU mode, and the actual response delay is not less than 1 ms for the ASCII mode.

C 5 Protocol function

The main function of Modbus is reading/writing parameters. Different command codes control different operation requests. MV600J6B Modbus protocol supports the operations shown in the following table:

Command code	Meaning
0x03	Used to read the drive parameters, including function code parameters, control parameters and status parameters.
0x06	Used to change the single 16-bit function code parameter or control parameter of the drive, and the parameter value will be not saved after power off.
0x08	Line diagnosis
0x10	Used to change multiple function code parameters or control parameters of the drive, and the parameter values will not be saved after power off.
0x41	Used to change the single 16-bit function code parameter or control parameter of the drive, and the parameter value will be saved after power off.
0x42	Function code management of the drive.
0x43	Used to change multiple function code parameters or control parameters, and the parameter values will be saved after power off.

All the function code parameters, control parameters and status parameters of the drive are mapped as the read/write registers of Modbus. The read/write features and ranges of function code parameters are specified in the user manual. The group number of the drive function code is mapped as the high byte of the register address, and the group internal index (the serial number of the parameter in the group) is mapped as the low byte of the register address. The control parameters and status parameters are designed to be virtual function code groups of the drive. The correspondence between the group numbers of the function codes and the high bytes of the mapped register address are as shown in the following table.

Drive parameter group	High byte of the address mapped	Drive parameter group	High byte of the address mapped
P00	0x00	P14	0x0E
P01	0x01	P15	0x0F

P02	0x02	P97	0x61
P03	0x03	P98	0x62
P04	0x04	P97	0x61
P09	0x09	P98	0x62
P10	0x0A	Control parameter group	0x64
P12	0x0C	Status parameter group	0x65
P13	0x0D		

For example, the register address of the function code parameter P03.02 is 0x0302, and the register address of the first control parameter (control word 1) is 0x6400.

As the format of the whole data frame has been explained in the above text, the following text will describe the format and meanings of the "command code" and "data" of Modbus protocol. These two parts constitute the Modbus application layer data unit. The following description to the frame format is based on the RTU mode. The length of data unit in the ASCII application layer shall be doubled.

1. Read the drive parameters

The application-layer protocol data unit is shown as below.

Response format:

Application-layer protocol data unit	Data length (number of bytes)	Value or range
Command code	1	0x03
Start register address	2	0x0000 to 0xFFFF
Number of registers	2	0x0001 to 0x000A

If the operation is successful, the response format is as follows:

Application-layer protocol data unit	Data length (number of bytes)	Value or range
Command code	1	0x03
Number of bytes read	1	2 × Number of registers
Content read	2 × Number of registers	Parameter value

If the operation fails, the abnormal response frame will return. The abnormal response frame includes the error code and exception code in which the error code = (command code + 0x80), and the exception code indicates the error cause.

Abnormal response frame format:

Application-layer protocol data unit	Data length (number of bytes)	Value or range
Error code	1	(command code+0x80)
Exception code	1	

The exception codes and meanings are as follows:

Exception	Meaning
0x01	Illegal command code

0x02	Invalid register address
0x03	Data error (data out of the upper/lower limit range)
0x04	Slave operation failure (including errors caused by invalid data in the upper/lower limit range)
0x05	The command is valid and is being processed (mainly used to save data in non-volatile storage).
0x06	Slave busy. Try again later. It is mainly used to save data in non-volatile storage.
0x16	Unsupported operations (mainly for control parameters and status parameters, such as properties, factory values, upper and lower limit reading, etc.)
0x17	The number of registers in the request frame is incorrect (such as an odd number of bytes for 32-bit operations, etc.).
0x18	Information frame errors (including message length errors and check errors).
0x20	The parameter cannot be modified.
0x21	Drive running time parameters cannot be modified.
0x22	Parameters are password protected.

2. Change the single 16-bit function code parameter and status parameter of the drive, and the parameter value will not be saved after power off.

When this command is used, the changed parameter value will not be saved upon power on after power off. The application-layer protocol data unit is as follows.

Request format:

Application-layer protocol data unit	Data length (number of bytes)	Value or range
Command code	1	0x06
Register address	2	0x0000 to 0xFFFF
Register content	2	0x0000 to 0xFFFF

If the operation is successful, the response format is as follows:

Application-layer protocol data unit	Data length (number of bytes)	Value or range
Command code	1	0x06
Register address	2	0x0000 to 0xFFFF
Register content	2	0x0000 to 0xFFFF

If the operation fails, the abnormal response frame will return, and the format is described as above.

3. Line diagnosis

The application-layer protocol data unit is as follows.

Request format:

Application-layer protocol data unit	Data length (number of bytes)	Value or range
Command code	1	0x08
Subcommand code	2	0x0000 to 0x0030
Data	2	0x0000 to 0xFFFF

If the operation is successful, the response format is as follows:

Application-layer protocol data unit	Data length (number of bytes)	Value or range
Command code	1	0x08
Subcommand code	2	0x0000 to 0x0030
Data	2	0x0000 to 0xFFFF

If the operation fails, the abnormal response frame will return, and the format is described as above.

The subcommand code and description of line diagnosis are shown in the following table.

Subcommand code	Data (request)	Data (response)	Function
0.0004	0x0000	0x0000	Initialize communication again: disable the no-response mode.
0x0001	0xFF00	0xFF00	Initialize communication again: disable the no-response mode.
0x0003	The high byte is the "new frame tail", and the low byte is "00".	The high byte is the "new frame tail", and the low byte is "00".	Set the ASCII frame tail. The "new frame tail" replaces the old line feed symbol. The "new frame tail" is not saved when the power is off (the "new frame tail" cannot be greater than 0x7F and cannot be equal to 0x3A).
0x0004	0x0000	No response	Enable the no-response mode. In this mode, the slave only responds to the "request for initialization of communication (request of 0x0001)", and does not respond to and deal with other requests. This function is used to isolate slave drives that are faulty.
	0x0000	0x0000	Enable the slave not to respond to invalid and error commands.
0x0030	0x0001	0x0001	Enable the slave to respond to invalid and error commands.

4. Change multiple function code parameters and control parameters of the drive, and the parameter values will not be saved after power off.

When this command is used, the changed parameter value will not be saved upon power on after power off. The application-layer protocol data unit is as follows.

Request format:

Application-layer protocol data unit	Data length (number of bytes)	Value or range
Command code	1	0x10
Start register address	2	0x0000 to 0xFFFF
Number of registers in operation	2	0x0001 to 0x000A
Bytes of register content	1	2 × number of registers in operation

Register content	2 × number of registers in operation	
------------------	--------------------------------------	--

If the operation is successful, the response format is as follows:

Application-layer protocol data unit	Data length (number of bytes)	Value or range
Command code	1	0x10
Start register address	2	0x0000 to 0xFFFF
Number of registers in operation	2	0x0001 to 0x000A

This command is used to change the contents of continuous data units starting from the start register address. If the operation fails, an exception response frame will return, in the format described earlier.

- 5. The command code 0x41 is used to rewrite a single 16-bit function code parameter or control parameter and save it in a non-volatile storage unit. Its format is same as 0x06. The only difference is that the parameter value operated by the 0x06 command is not saved after power failure, and the parameter value operated by the 0x41 command is saved after power failure.
- 6. Drive function code management

Driver function code management includes reading the upper limit and lower limit of parameters, reading parameter features, reading the maximum intra-group index of the function code menu, reading the next function code group number and the last function code group number, reading the current display status parameter index, displaying the next status parameter, and reading the factory value of the function code parameter. Parameter features include the read-write property of the parameter, the unit of the parameter, and the scaling relations.

The application-layer protocol data unit is as follows.

Request format:

Application-layer protocol data unit	Data length (number of bytes)	Value or range
Command code	1	0x42
Subcommand code	2	0x0000 to 0x0008
Data	2	Dependent on the drive

If the operation is successful, the response format is as follows:

Application-layer protocol data unit	Data length (number of bytes)	Value or range
Command code	1	0x42
Subcommand code	2	0x0000 to 0x0008
Data	2 or 4	0x00000000 to 0xFFFFFFF

If the operation request fails, the response includes the error code and the exception code. If the operation fails, the abnormal response code will return as described above.

The subcommand code and description of function code management are shown in the following table.

Subcommand code	Data (request)	Data (response)	Function
0x0000	Parameter group number and index in the group respectively as	Upper limit of the parameter (4-character	Read the upper limit of the parameter (not available for status parameters).

Subcommand code	Data (request)	Data (response)	Function
	the high byte and the low byte	long)	
0x0001	Parameter group number and index in the group respectively as the high byte and the low byte	Lower limit of the parameter (4-character long)	Read the lower limit of the parameter (not available for status parameters).
0x0002	Parameter group number and index in the group respectively as the high byte and the low byte	Parameter feature (refer to the feature table of parameters for details)	Read the features of function code parameters (not available for control parameters and status parameters).
0x0003	Parameter group number as the high byte, and "00" as the low byte	Number of parameters in the group	Read the number of parameters in the group.
0x0004	Parameter group number as the high byte, and "00" as the low byte	High byte is the group number of next function group, and low byte is "00".	Read the group number of next function group.
0x0005	Parameter group number as the high byte, and "00" as the low byte	High byte is the group number of last function group, and low byte is "00".	Read the group number of last function group.
0x0006	0x6500	Currently displayed status parameter index	Read the currently displayed status parameter index (definitions shown in the corresponding function group).
0x0007	0x6500	Next status parameter index	Display the next status parameter (definitions shown in the corresponding function group).
0x0008	Parameter group number and index in the group respectively as the high byte and the low byte	Factory value of the parameter	Read factory values of function code parameters (not available for control parameters and status parameters).

In the table above, when the upper/lower limit of the parameter is read, the length of the returned data is 32 bits, that is, 4 bytes. Status parameters do not support this operation. The upper/lower limit value read by this operation is the upper/lower limit value that the corresponding function code parameter may reach. If the parameter range is limited by other function code parameters (that is, there are associated function code parameters), it needs to be determined based on the associated function code parameter value.

Unless otherwise specified, the data part of the response frame is 2 bytes long.

The feature of function code parameter is 2 bytes long and its bits are defined as follows:

Bit	Feature	Value	Meaning
		0	Decimal limit
BIT0	Upper limit	1	Hexadecimal limit
		000	No decimal points
BIT3 to BIT1 Decimal points		010	1 decimal point

Bit	Feature	Value	Meaning
		010	2 decimal points
		011	3 decimal points
		100	Step size is 2
		101	Step size is others
		Others	Reserved
		00	Actual value, which can not be modified
		01	Can be modified during running
BIT5 to BIT4	Modification property	10	Cannot be modified during running / Cannot be modified by users as it is manufacture setting
		11	Reserved
		000	No unit
	Display unit	001	Unit is Hz
		010	Unit is A
DITO 4. DITO		011	Unit is V
BIT8 to BIT6		100	Unit is r/min
		101	Unit is line speed (m/s)
		110	Unit is percentage (%)
		Others	Reserved
ВІТ9	Reserved		
DITAO	Restore factory	1	Restore
BIT10	settings	0	Not restore
DITAA	Oct days	1	Valid
BIT11	Quick menu	0	Invalid
BIT12 Basic menu	Basis manu	1	Valid
	basic menu	0	Invalid
DIT42	16/32-bite	1	32 bits
BIT13	parameter	0	16 bits
BIT15 to BIT14	Reserved		

^{7.} Change multiple drive function code parameters and status parameters, and the parameter values will be saved after power off

The command code 0x43 is used to change multiple drive function code parameters or control parameters and is saved in a non-volatile storage unit.

The format of the command is the same as that of 0x10. The only difference is that the parameter value operated by the 0x10 command is not saved after power off, and the parameter value operated by the 0x43 command is saved after power failure.

C.6 Control parameter and status parameters of drive

The control parameters of the drive can complete the functions of starting, stopping and setting the running frequency of the drive. By querying the status parameters of the driver, you can obtain the running frequency, output current and bus voltage of the drive.

1. Control parameters

The control parameters of the drive are shown in the following table:

Register address	Parameter name	Saved or not upon power failure	Note
0x6400	Control word	No	Refer to its bit definition table
0x6401	Pressure reference	No	
0x6401	Flow reference (speed reference)	No	

Note

- 1. The returned value for control parameter reading is the value written during last communication.
- 2. Among control parameters, the maximum length of pressure reference and flow reference is 32 bits.
- 3. Among control parameters, refer to function codes to get more information about various kinds of references, input/output range, and decimal scaling.

The bit definitions of control word are shown in the following table. For example, 0x24 is motor FWD, 0x2c is motor REV, and 0x20 is motor stop.

Bit	Value	Function	Note
	111B	External fault stop	Coast to stop
	110B	Stop according to mode 1	Coast to stop
BI2T to BIT0	101B	Stop according to mode 2	Stop according to deceleration time
	100B	Running command	Drive start
	000	000 Invalid command	
BIT3	1	REV	
	0	FWD Set the ope	
BIT5	1	Reserved Reserved	
BIT9	1	Fault reset Clear current alarm	

2. Status parameters

Register address	Parameter name	Note
0x6500	Drive series	

Register address	Parameter name	Note
0x6501	Software version No.	
0x6502	Software auxiliary version No.	
0x6503	Current feedback frequency	
0x6504	Output current	
0x6505	Output voltage	
0x6506	Output power	
0x6507	Bus voltage	
0,46509	DI/DO etete	BT0 to BT5: X1 to X6
0x6508	DI/DO state	BT10 to BT12: Y1/Y2/RO1
0x6509	Torque current percentage	
0x650A	Current feedback speed	
0x650B	Running state word 1	
0x650C	Reserved	
0x650D	Drive running state	
0x650E	Running frequency setting	
0x650F	Speed setting	
0x6510	A11	
0x6511	Al2	
0x6512	Al3	
0x6513	Pressure reference	
0x6514	Pressure feedback	
0x6515	Flow reference	
0x6516	1st fault	
0x6517	2nd fault	
0x6518	3rd fault	
0x6519	Bust voltage upon 3rd fault	
0x651a	Actual current upon 3rd fault	
0x651b	Running frequency upon 3rd fault	
0x651c	Running state upon 3rd fault	

☐ Note

The status parameters can no be written.

The bit definitions of drive running state 1 are shown in the following table.

Bit	Value	Function	Note
DITO	1	Enable serial port control	
BIT0	0	Disable serial port control	
	1	Drive running	
BIT1	0	Drive stop	
	1	Drive REV	
BIT2	0	Drive FWD	
	1	Enable serial port reference	
BIT3	0	Disable serial port reference	
	1	Main reference reached	
BIT4	0	Main reference not reached	
	1	Fault	1 indicates that there is a fault. Check the
BIT5	0	No fault	fault type according to Bit15 to Bit8 of status word 1.
	1	Alarm	1 indicates that there is an alarm. Check the
BIT6	0	No alarm	alarm type according to Bit15 to Bit8 of status word 1.
BIT7	0	Reserved	
BIT15 to BIT8	0x00 to 0xFF	Fault or alarm code	0: No fault or alarm Non-0: indicates a fault or an alarm. You need to combine the status of Bit5 and Bit6 to determine whether the code is a fault or an alarm. For details about the fault and alarm types, see P97.15.

C.7 Cautions

- 1. For command codes 0x10 and 0x43, when multiple driver function code parameters are written consecutively, if the write operation of any function code is invalid (such as invalid parameter value or parameter cannot be modified), an error message is returned, and all parameters cannot be modified. When multiple control parameters are written consecutively, if the write operation of any parameter is invalid (for example, the parameter value is invalid or the parameter cannot be modified), the operation is returned from the storage address that fails first. The parameter and its subsequent parameters cannot be modified, but parameters before the parameter can be written normally, and an error message is returned.
- 2. For some special function codes, 0x06 and 0x41, 0x10 and 0x43 have the same function. During the write operation, if the power is powered on again after power failure, the parameters are saved. These function codes are shown in the following table:

Function code	Description
---------------	-------------

Function code	Description	
P00.03	Parameter protection setting	
P02.01	Motor selection	
P09.00 to P09.07	Input terminal X1 to X8 function selection	
P02.05	Main frequency reference selection	
P03.00	Motor 1 rated power	
P03.04	Motor 1 rated speed	

- 3. Some control parameters cannot be saved to a non-volatile storage unit. Therefore, for these parameters, the command codes 0x41 and 0x06, 0x43 and 0x10 have the same operation effect, which means the write operation on them will not be saved upon power on again after power failure. See the control parameter table for details.
- 4. Some parameters inside MV600J6B are reserved and cannot be modified through communication settings. These parameters are listed in the following table:

Function code	Description	
P00.00	Menu mode selection	
P00.06	Parameter copy	
P03.24	Motor parameter auto-tuning	

C.8 CRC check

Considering the need to improve the speed, CRC-16 is usually implemented in a tabular way. The following is the implementation of CRC-16 C language source code. Note that the final result has been exchanged between high and low bytes, that is, the result is the CRC checksum to be sent.

```
unsigned short CRC16 (unsigned char *msg, unsigned char
                                                                 /* The function returns the CRC as a
length)
                                                                 unsigned short type */
                                                                 /* WK*/
{
     unsigned char uchCRCHi = 0xFF;
                                                                 /* high byte of CRC initialized */
     unsigned char uchCRCLo = 0xFF;
                                                                 /* low byte of CRC initialized */
     unsigned uIndex;
                                                                 /* index into CRC lookup table */
     while (length--)
                                                                 /* pass through message buffer */
     {
           uIndex = uchCRCLo ^ *msg++;
                                                                 /* calculate the CRC */
           uchCRCLo = uchCRCHi ^ (crcvalue[uIndex] >>8);
           uchCRCHi =crcvalue[uIndex]&0xff;
      }
      return (uchCRCHi | uchCRCLo<<8) ;
}
```

/* Table of CRC values */

const unsigned int crcvalue[] = {

0x0000,0xC1C0,0x81C1,0x4001,0x01C3,0xC003,0x8002,0x41C2,0x01C6,0xC006,0x8007,0x41C7,0x00 05,0xC1C5,0x81C4,0x4004,0x01CC,0xC00C,0x800D,0x41CD,0x000F,0xC1CF,0x81CE,0x400E,0x000A, 0xC1CA,0x81CB,0x400B,0x01C9,0xC009,0x8008,0x41C8,0x01D8,0xC018,0x8019,0x41D9,0x001B,0xC 1DB,0x81DA,0x401A,0x001E,0xC1DE,0x81DF,0x401F,0x01DD,0xC01D,0x801C,0x41DC,0x0014,0xC1D 4,0x81D5,0x4015,0x01D7,0xC017,0x8016,0x41D6,0x01D2,0xC012,0x8013,0x41D3,0x0011,0xC1D1,0x8 1D0,0x4010,0x01F0,0xC030,0x8031,0x41F1,0x0033,0xC1F3,0x81F2,0x4032,0x0036,0xC1F6,0x81F7,0x 4037,0x01F5,0xC035,0x8034,0x41F4,0x003C,0xC1FC,0x81FD,0x403D,

0x01FF,0xC03F,0x803E,0x41FE,0x01FA,0xC03A,0x803B,0x41FB,0x0039,0xC1F9,0x81F8,0x4038,0x00 28,0xC1E8,0x81E9,0x4029,0x01EB,0xC02B,0x802A,0x41EA,0x01EE,0xC02E,0x802F,0x41EF,0x002D,0 xC1ED,0x81EC,0x402C,0x01E4,0xC024,0x8025,0x41E5,0x0027,0xC1E7,0x81E6,0x4026,0x0022,0xC1 E2,0x81E3,0x4023,0x01E1,0xC021,0x8020,0x41E0,0x01A0,0xC060,0x8061,0x41A1,0x0063,0xC1A3,0x 81A2,0x4062,0x0066,0xC1A6,0x81A7,0x4067,0x01A5,0xC065,0x8064,0x41A4,0x006C,0xC1AC,0x81AD ,0x406D,0x01AF,0xC06F,0x806E,0x41AE,0x01AA,0xC06A,0x806B,0x41AB,0x0069,0xC1A9,0x81A8,0x4 068,0x0078,0xC1B8,0x81B9,0x4079,0x01BB,0xC07B,0x807A,0x41BA,

0x01BE,0xC07E,0x807F,0x41BF,0x007D,0xC1BD,0x81BC,0x407C,0x01B4,0xC074,0x8075,0x41B5,0x0 077,0xC1B7,0x81B6,0x4076,0x0072,0xC1B2,0x81B3,0x4073,0x01B1,0xC071,0x8070,0x41B0,0x0050,0 xC190,0x8191,0x4051,0x0193,0xC053,0x8052,0x4192,0x0196,0xC056,0x8057,0x4197,0x0055,0xC195,0x8194,0x4054,0x019C,0xC05C,0x805D,0x419D,0x005F,0xC19F,0x819E,0x405E,0x005A,0xC19A,0x81 9B,0x405B,0x0199,0xC059,0x8058,0x4198,0x0188,0xC048,0x8049,0x4189,0x004B,0xC18B,0x818A,0x 404A,0x004E,0xC18E,0x818F,0x404F,0x018D,0xC04D,0x804C,0x418C,0x0044,0xC184,0x8185,0x4045,0x0187,0xC047,0x8046,0x4186,0x0182,0xC042,0x8043,0x4183,0x0041,0xC181,0x8180,0x4040}

C.9 Application example

(1) Parameter settings for oil pressure mode

Function code	Register	Read/Wrote	Data written
P14.00 (Pressure control mode)	0x0e00	Write	3
P02.02 (Operation command channel selection)	0x0202	Write	2
P02.04 (Main frequency reference selection)	0x0204	Write	6

1# Drive forward running:

Data frame	Address	Command code	Register address	Register content	Check code
Request	0x01	0x06	0x6400	0x0024	0xE196
Response	0x01	0x06	0x6400	0x0024	0xE196

1# Drive reverse running:

Data frame	Address	Command code	Register address	Register content	Check code
Request	0x01	0x06	0x6400	0x002C	0x2797
Response	0x01	0x06	0x6400	0x002C	0x2797

1# Drive pressure reference, 50.0 bar:

Data frame	Address	Command code	Register address	Register content	Check code
Request	0x01	0x06	0x6401	0x01F4	0x2DC7
Response	0x01	0x06	0x6401	0x01F4	0x2DC7

1# Drive flow reference, output frequency = maximum frequency (P02.15) * flow reference (0.01%)

Example: 6.66 Hz = 133.33 Hz * 5%:

	Data frame	Address	Command code	Register address	Register content	Check code
	Request	0x01	0x06	0x6402	0x01F4	0x2D37
ſ	Response	0x01	0x06	0x6402	0x01F4	0x2D37

(2) Parameter settings for speed mode:

Function code	Register	Read/Wrote	Data written
P14.00 (Pressure control mode)	0x0e00	Write	3
P02.02 (Operation command channel selection)	0x0202	Write	2
P02.04 (Main frequency reference selection)	0x0204	Write	2

1# Drive flow reference, 50.0 rpm:

Data frame	Address	Command code	Register address	Register content	Check code
Request	0x01	0x06	0x6402	0x01F4	0x2D37
Response	0x01	0x06	0x6402	0x01F4	0x2D37

1# Drive fault reset:

Data frame	Address	Command code	Register address	Register content	Check code
Request	0x01	0x06	0x6400	0x0220	0x4296
Response	0x01	0x06	0x6400	0x0220	0x4296

Read 1# Both 0x0107 and 0x6504 can be read for the output current of drive. The output current of drive response is 30.0 A (16 bits).

Data frame	Address	Command code	Register address	Number of registers and number of bytes read	Register content	Check code
Request	0x01	0x03	0x0107 or 0x6504	0x0001	None	0x3734 0x07DB
Response	0x01	0x03	None	0x02	0x012C	0xE1B4

C.10 Scaling of drive

1. The frequency scaling is 1:100

To run the drive at 50.00 Hz, the main setting should be 0x1388 (5000).

2. The pressure scaling is 1:10

To set the drive pressure to 50.0 bar, the function code setting should be 0x01F4 (500).

3. The flow scaling is 1:100

To set the drive flow to 5.00%, the flow reference should be 0x01F4 (500).

Output frequency = maximum frequency (P02.15) * flow reference (0.01%)

Example: 6.66 Hz = 133.33 Hz * 5%

4. The speed scaling is 1:10

To set the drive speed to 50.0 rpm, the speed reference should be 0x01F4 (500).

5. For other parameters, refer to the description in the corresponding parts.

Appendix D Warranty and Service

Shenzhen Megmeet Electrical Co., Ltd. manufactures motor drive products strictly according to the ISO9001:2008 standard. In case of any product abnormalities, please contact the distributor or the headquarters. Our company will provide full technical support for you.

1. Warranty period

The product is warranted for 18 months from the purchase date, however, the warranty date shall not exceed 24 months after the manufacturing date on the nameplate.

2. Warranty scope

During the warranty period, any product abnormalities incurred due to our company can be freely repaired or replaced by our company. In case of the following situations, maintenance fees will also be charged even if the product is still in the warranty period.

- (1) The damages are caused by fire, flood, strong lightning strike, etc.
- (2) The damages are caused by users' unauthorized modifications.
- (3) The product is damaged due to drop or in transmission after the purchase.
- (4) The product is damaged because the standard requirements are not obeyed in actual use.
- (5) The product is damaged because the user does not follow the instructions of the user manual.
- 3. After-sales service
- (1) If there are specific requirements for drive installation and trial operation, or the working status of the drive is not satisfactory (such as unsatisfactory performance and function), please contact the distributor or Shenzhen Megmeet Electrical Co., Ltd.
- (2) In case of any abnormality, contact the distributor or Shenzhen Megmeet Electrical Co., Ltd. immediately for help.
- (3) During the warranty period, our company will repair any drive abnormality incurred due to the product manufacturing and design free of charge.
- (4) If the product is out of the warranty period, our company can provide paid repairing service according to the customers' needs.
- (5) The service charge is calculated by actual costs. If there is an agreement, the agreement shall prevail.

Shenzhen Megmeet Electrical Co., Ltd.

Address: 5th Floor, Block B, Unisplendor Information Harbor, Langshan Road, Nanshan District, Shenzhen,

518057, China

Tel: +86-755-86600500 Fax: +86-755-86600562

Zip code: 518057

Website: https://www.megmeet.com

Shenzhen Megmeet Electrical Co., Ltd.

Drive Warranty Bill

Customer company:				
Detailed address:				
Zip code:	Contact:			
Tel:	Fax:			
Machine model:				
Power:	Machine No.:			
Contract No.:	Purchase date:			
Service unit:				
Contact:	Tel:			
Maintenance person:	Tel:			
Maintenance date:				
Comment on service:				
□Good □Fair	□ So so □ Poor			
Other comment:				
User's signature	e: Date:			
Return visit record in Customer Service Center: Telephone return visit Letter return visit Other:				
Signature of the technical s	support engineer: Date:			

Note: This bill becomes invalid if the user can not be visited.

Drive Warranty Bill

	Waltanty bill
Customer company:	
Detailed address:	
Zip code:	Contact:
Tel:	Fax:
Machine model:	
Power:	Machine No.:
Contract No.:	Purchase date:
Service unit:	
Contact:	Tel:
Maintenance person:	Tel:
Maintenance date:	
Comment on service:	
□Good □Fair	□ So so □ Poor
Other comment:	
User's signature	e: Date:
Return visit record in Customer Service Center: □Telephone return visit □Letter return visit Other:	
Signature of the technical support engineer: Date:	

Note: This bill becomes invalid if the user can not be visited.